Acknowledgment

The authors thank Mr. N. Pouratian, G.K. Wong, and D.E. Rex for their technical assistance.

References


NeuroImages

The fogging effect

Julio A. Chalela, MD, Scott E. Kasner, MD, Philadelphia, PA

A 64-year-old man developed acute vertigo, nausea, and vomiting. He was taken to a hospital, where he was diagnosed with acute labyrinthitis and discharged home. One day later he returned with worsening symptoms. CT of the head revealed hypodensity in the territory of the lateral posterior inferior cerebellar artery (L-PICA) compatible with a subacute infarct (figure, A). The patient was found to have a large patent foramen ovale and was discharged home on oral warfarin. Ten days later, he returned to the emergency room complaining of facial numbness. A repeat noncontrast CT scan performed 11 days after the onset of the symptoms. The previously easily recognizable infarct is now not obvious (figure, B). CT scan performed 4 months later reveals an area of encephalomalacia in the same territory as the initial hypodensity.

Normal findings on CT scan of patients with known radiologic evidence of cerebral infarcts can be a source of great perplexity that can lead to unnecessary neuroimaging. This phenomenon in which initially hypodense ischemic areas transiently become isodense to normal brain has been termed the "fogging effect." It usually occurs in the second and third weeks after a stroke and is believed to be due to influx of lipid-laden macrophages, proliferation of capillaries, and decrease in bulk water in the infarcted area. Administration of IV contrast invariably demonstrates the otherwise unrecognizable infarct. The fogging effect has been described with CT imaging and with T1-weighted MRI and both techniques may have diagnostic pitfalls if imaging studies without contrast are performed in the subacute phase of a stroke.

The fogging effect

Neurology 2000;55;315
DOI 10.1212/WNL.55.2.315

This information is current as of July 25, 2000