Human T-lymphotrophic virus type I– (HTLV-I–) associated myelopathy/tropical spastic paraparesis (HAM/TSP) is a chronic, slowly progressive myelopathy caused by HTLV-I. The main neurologic findings are spastic paraparesis and urinary disturbance. The incidence of HAM/TSP among HTLV-I–infected individuals is estimated to be less than 1%. This suggests that occurrence of HAM/TSP requires additional factors, such as viral factors and host conditions.

Among 213 patients with HAM/TSP diagnosed at our university before 1993, 172 patients had no history of blood transfusion. Although HTLV-I was mainly transmitted by maternal milk, 151 patients did not begin to show symptoms of HAM/TSP until middle or old age. However, 21 of 213 patients presented symptoms at less than 15 years of age. These juvenile-onset patients appeared to have characteristic signs of short stature and hypocalcemia. Among them, three juvenile-onset patients with HAM/TSP and pseudohypoparathyroidism type Ia (PHP Ia) have already been reported.

The purpose of the current study was to clarify whether short-stature patients with HAM/TSP had a tendency to exhibit signs and symptoms during early age and whether this was related to PHP Ia.

Methods. HAM/TSP was diagnosed according to World Health Organization diagnostic guidelines. We classified the heights of HAM/TSP patients using the table of Japanese average height against sex and ages (1995), and we examined 14 patients with HAM/TSP complicated with short stature for PHP Ia (table 1). We applied the following criteria for diagnosis of PHP Ia: 1) serum levels of calcium, phosphorus, and parathyroid hormone (PTH); 2) short stature, round face, obesity, slight mental retardation, and short metacarpals—signs of Albright’s hereditary osteodystrophy (AHO); 3) resistance to PTH loading test (Ellsworth–Howard test, E-H test); and 4) α-subunit of the stimulatory guanine nucleotide-binding protein (Gsa) abnormality. We used the Wechsler Adult Intelligence Scale (WAIS) to determine IQ.

The renal resistance for external PTH was examined from urinary cAMP excretion in response to 100 units of human recombinant PTH 1–34 (Asahi Chemical Ind., Tokyo, Japan) (E-H test). We set a <1 μmol increase of urinary excretion after PTH injection for 1 hour as positive. Erythrocyte membrane prepared by Dodge’s procedure was subjected to 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis and transferred to a nitrocellulose membrane. Western blotting was conducted with anti-Gsa antibody (K-20 antibody; Santa Cruz Biotechnology, Inc., Santa Cruz, CA) and peroxidase conjugated rabbit anti-IgG antibody (Jackson Immunoresearch Laboratories, West Grove, PA) as a secondary antibody.

Twenty milliliters of heparinized blood was collected with the patient’s permission, and lymphocytes were separated using a Ficoll-Hypaque solution (Mono-Poly Resolving Medium; Dainippon Pharmaceutical Co., Osaka, Japan). Total cellular RNA was extracted with 1 mL of RNAzol B (Cinna Biotexc, Houston, TX) per 10⁶. Five micrograms of RNA were subjected to Northern blotting with a [32P]-labeled Gsa cDNA.

Results. Among the 294 patients with HAM/TSP who were examined before 1995, 51 were found to have short stature (less than −1 SD against Japanese average height). Among them, 34 were adult-onset patients and 17 were juvenile-onset patients. Furthermore, among the short-stature patients measured against Japanese average height, the rate of juvenile-onset patients was significantly higher (table 2). The short-stature patients tended to manifest the signs and symptoms during early age.

Twenty-nine patients with juvenile-onset HAM/TSP (4 men, 25 women) were identified among the 294 patients with HAM/TSP. Their heights are plotted in the figure. These findings show that juvenile-onset patients were mainly those with short stature.

The clinical features of 14 short-stature patients with HAM/TSP are shown in table 1. Neither round face nor obesity was found in these patients. A younger brother of Patient 14 (aged 44 years, height 150 cm [−3.3 × SD]) and two sisters of Patient 2 had HAM/TSP and short stature; however, extensive examination was not allowed.

The immunoreactivity of Gsa, the 45 kDa molecular weight of human erythrocyte membrane, was reduced in 11 patients and in the youngest sister (aged 38 years,
height 153 cm \([-0.6 \times SD\), juvenile-onset HAM/TSP\) of Patient 5 (table 1).

The mRNA expression of \(Gsa\) was reduced in Patient 3 and her mother, Patient 4, Patient 7 and his mother, and Patient 13, compared with that in normal controls (table 1). Only a few patients were examined because of the large blood volume collection necessary for mRNA preparation.

These findings indicate that eight patients possibly had PHP Ia and four patients possibly had pseudopseudohypoparathyroidism (PPHP).

Discussion. PHP is a metabolic disorder characterized by AHO and resistance to PTH. PHP Ia and PPHP are genetically the same disease. The decreased activity and the low protein levels of \(Gsa\) are responsible for PHP Ia.\(^4\) We diagnosed four patients with PPHP who had no hormone resistance despite a \(Gsa\) deficiency.

Although PHP is clinically diagnosed by the E-H test, we used the E-H test for several patients because the current patients had urinary disturbances. Furthermore, most patients with a normal serum calcium level had normal reactions to PTH in the E-H test.\(^5\) We have no method to diagnose PHP Ib (PTH receptor abnormality), PHP Ic (adenylate cyclase deficiency), and PHP type II. Therefore, we only diagnosed PHP Ia and the variant-type PPHP in the patients with HAM/TSP.

Autosomal dominant transmission is a known inheritance pattern of PHP Ia.\(^4\) Among the families of 12 patients diagnosed with PHP Ia or PPHP, two of their

Table 1 Clinical and laboratory findings of the short stature patients with human T-lymphotrophic virus type 1–(HTLV-1–) associated myelopathy/tropical spastic paraparesis

<table>
<thead>
<tr>
<th>Patient no.</th>
<th>Age (y/sex)</th>
<th>Height, cm (SD)*</th>
<th>Age at onset</th>
<th>HTLV-1 titer†</th>
<th>Serum Ca (8.5–10.5 mg/dL)</th>
<th>CSF P (2.5–4.5 mg/dL)</th>
<th>HS-PTH (160–520 pg/mL)</th>
<th>(1,25(\text{OH})_2\text{D}_3) (20–76 pg/mL)</th>
<th>E-H test</th>
<th>Short meta-carpus</th>
<th>WAIS</th>
<th>RBC Gs (a) mRNA Diagnosis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>57/F</td>
<td>140 (2.4)</td>
<td>Childhood</td>
<td>2048</td>
<td>32</td>
<td>9.0</td>
<td>3.7</td>
<td>200</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>Decreased ND</td>
</tr>
<tr>
<td>2</td>
<td>72/F</td>
<td>134 (2.8)</td>
<td>Infancy</td>
<td>8192</td>
<td>128</td>
<td>8.5</td>
<td>4.4</td>
<td>270</td>
<td>18.3</td>
<td>Positive +</td>
<td>76</td>
<td>Decreased ND</td>
</tr>
<tr>
<td>3</td>
<td>55/F</td>
<td>140 (3.0)</td>
<td>Childhood</td>
<td>2048</td>
<td>252</td>
<td>8.8</td>
<td>4.1</td>
<td>340</td>
<td>58</td>
<td>Positive +</td>
<td>83</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>4</td>
<td>71/F</td>
<td>137 (2.2)</td>
<td>59 y</td>
<td>131,072</td>
<td>131,072</td>
<td>8.1</td>
<td>4.2</td>
<td>290</td>
<td>ND</td>
<td>Positive –</td>
<td>82</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>5</td>
<td>48/F</td>
<td>144 (2.2)</td>
<td>Childhood</td>
<td>32,788</td>
<td>512</td>
<td>8.4</td>
<td>3.7</td>
<td>300</td>
<td>ND</td>
<td>Negative +</td>
<td>62</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>6</td>
<td>70/F</td>
<td>138 (2.0)</td>
<td>66 y</td>
<td>2048</td>
<td>8</td>
<td>8.4</td>
<td>3.5</td>
<td>310</td>
<td>ND</td>
<td>Negative ND</td>
<td>62</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>7</td>
<td>44/M</td>
<td>149 (3.4)</td>
<td>Childhood</td>
<td>65,536</td>
<td>128</td>
<td>8.4</td>
<td>2.9</td>
<td>360</td>
<td>16</td>
<td>ND</td>
<td>69</td>
<td>Decreased Decreased PPHP</td>
</tr>
<tr>
<td>8</td>
<td>75/F</td>
<td>131 (2.7)</td>
<td>60 y</td>
<td>8192</td>
<td>512</td>
<td>8.6</td>
<td>3.7</td>
<td>250</td>
<td>28.5</td>
<td>Negative +</td>
<td>78</td>
<td>ND Decreased ND</td>
</tr>
<tr>
<td>9</td>
<td>18/F</td>
<td>132 (4.9)</td>
<td>15 y</td>
<td>4096</td>
<td>128</td>
<td>8.6</td>
<td>5.4</td>
<td>ND</td>
<td>36.8</td>
<td>ND</td>
<td>64</td>
<td>Decreased Decreased PPHP</td>
</tr>
<tr>
<td>10</td>
<td>27/F</td>
<td>146 (2.5)</td>
<td>13 y</td>
<td>8192</td>
<td>512</td>
<td>8.6</td>
<td>3.8</td>
<td>330</td>
<td>ND</td>
<td>Negative –</td>
<td>56</td>
<td>Normal ND</td>
</tr>
<tr>
<td>11</td>
<td>42/F</td>
<td>140 (3.1)</td>
<td>10 y</td>
<td>65,536</td>
<td>>4,092</td>
<td>9.4</td>
<td>3.9</td>
<td>320</td>
<td>ND</td>
<td>ND</td>
<td>Normal Normal</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>50/F</td>
<td>143 (2.4)</td>
<td>35 y</td>
<td>8192</td>
<td>64</td>
<td>8.0</td>
<td>3.2</td>
<td>ND</td>
<td>ND</td>
<td>Decreased ND</td>
<td>65</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>13</td>
<td>67/F</td>
<td>143 (1.2)</td>
<td>30 y</td>
<td>4096</td>
<td>256</td>
<td>8.2</td>
<td>3.1</td>
<td>410</td>
<td>55</td>
<td>Negative –</td>
<td>ND</td>
<td>Decreased Decreased PHP Ia</td>
</tr>
<tr>
<td>14</td>
<td>47/F</td>
<td>127 (5.5)</td>
<td>Childhood</td>
<td>2048</td>
<td>256</td>
<td>8.6</td>
<td>3.7</td>
<td>950</td>
<td>16.5</td>
<td>Positive +</td>
<td>78</td>
<td>ND Decreased ND</td>
</tr>
</tbody>
</table>

* How many SD the patients were shorter than Japanese average heights against sex and age (1995).
† HTLV titer was determined by the particle agglutination method (Fujirebio Inc., Tokyo, Japan). Normal range of serum is less than 16-fold and CSF is less than fourfold.
HS-PTH = hypersensitive PTH, assayed with HS-PTH determination kit (YAMASA, Japan); E-H = Ellsworth-Howard; WAIS = Wechsler Adult Intelligence Scale; RBC = red blood cell; ND = not determined; PPHP = pseudopseudohypoparathyroidism; PHP = pseudohypoparathyroidism.
Short stature was also found in patients with juvenile-onset HTLV-I–associated myelopathy/ tropical spastic paraparesis. 6

1,25-(OH)₂D₃ inhibited the proliferation of MT-2 cells and the HTLV-I infected T-cell line in a time- and dose-dependent manner. 10 These findings suggest that patients with PHP had an inappropriate immune defense system caused by decreased 1,25-(OH)₂D₃, which might be a host factor required for development of HAM/TSP.

Many kinds of diseases have been described in relation to HAM/TSP, such as T-lymphocyte alveolitis, Sjögren syndrome, arthropathy, uveitis, and PHP. These diseases, except for PHP, were probably caused by infiltrations of HTLV-I–infected T cells to the target organ. In contrast, HTLV-I infection does not induce PHP, but PHP may be a risk factor for the occurrence of HAM/TSP.

References

Table 2 Correlation of patients with juvenile-onset human T-lymphotrophic virus type 1–(HTLV-1–) associated myelopathy/tropical spastic paraparesis to short stature

<table>
<thead>
<tr>
<th>Stature</th>
<th>Adult onset</th>
<th>Juvenile onset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>231</td>
<td>12</td>
</tr>
<tr>
<td>Short < −1 SD*</td>
<td>34</td>
<td>17†</td>
</tr>
<tr>
<td>Short < −2 SD*</td>
<td>13</td>
<td>8†</td>
</tr>
</tbody>
</table>

* Short stature < −1 SD and < −2 SD indicates the patient numbers of the −1 × SD and −2 × SD shorter than the Japanese standard height. Number of short stature < −1 SD included that of short stature < −2 SD.
† p < 0.005 by χ².
HTLV-1–associated myelopathy/tropical spastic paraparesis with pseudohypoparathyroidism
Naoko Machigashira, Yoshihiro Yoshida, Sha-yan Wang, et al.
Neurology 2001;56;104-106
DOI 10.1212/WNL.56.1.104

This information is current as of January 9, 2001

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/56/1/104.full.html

References
This article cites 9 articles, 3 of which you can access for free at:
http://www.neurology.org/content/56/1/104.full.html##ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://www.neurology.org/content/56/1/104.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Spinal Cord
http://www.neurology.org/cgi/collection/all_spinal_cord
Endocrine
http://www.neurology.org/cgi/collection/endocrine
Spastic paraplegia
http://www.neurology.org/cgi/collection/spastic_paraplegia
Transverse myelitis
http://www.neurology.org/cgi/collection/transverse_myelitis

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus