MRI evidence of mesial temporal sclerosis in patients with psychogenic nonepileptic seizures

To the Editor: A number of epidemiologic studies have confirmed the importance of postnatal insults as a cause of epilepsy.¹ Neuroimaging has been an increasingly important diagnostic tool, and it has been stated that the demonstration of “epileptogenic lesions” strongly supports the diagnosis of epilepsy in these individuals.² The article by Benbadis et al. is a timely reminder of the pitfalls of diagnosing epilepsy based on neuroimaging findings alone.³ As the authors stated, EEG remains the standard diagnostic test in these cases of suspected epilepsy. Whereas many risk factors for psychogenic nonepileptic seizures have been identified,⁴ isolated psychogenic nonepileptic seizures in patients with CNS lesions have only rarely been reported.⁵,⁶ Benbadis et al.’s patients presented with a history of “seizures” and were found to have brain lesions (MTS).³ The opposite situation, namely patients with a CNS lesion who present with stereotypic symptoms that are assumed to represent epilepsy, is an equally difficult and probably a more common dilemma. The diagnosis of epilepsy in these patients, as with the cases reported by Benbadis et al., is frequently based on history and “confirmed” by the demonstration of CNS abnormalities on neuroimaging. We recently had four patients with well-defined CNS lesions and “refractory seizures” referred to us for epilepsy surgery in whom appropriate EEG studies showed only psychogenic nonepileptic seizures (table).

Psychogenic nonepileptic seizures in the absence of epilepsy have been reported in children with head injuries but have not been well studied in adults with CNS lesions.⁷ All our patients had clinical manifestations that were “neurologically correct” with the paretic side being the one initially involved at the onset of the psychogenic attacks. In contrast, focal psychogenic neurologic symptoms (paralysis, dysesthesias) in patients without CNS lesions seem to randomly involve either right or left sides of the body.⁸ None of our patients had epilepsy; all had a positive seizure induction that reproduced their “typical seizures.” Attacks were often but not always precipitated by situations of stress; all patients felt that the residual neurologic deficits limited their ability to cope with life situations. Neuroimaging in each case showed obvious lesions involving cortex and underlying white matter (figure). Telemetry evaluation showed no epileptogenic abnormalities in any of them. However, previous EEG in one postcraniotomy case had been incorrectly interpreted as showing “epileptogenic” abnormalities which in retrospect represented breccia rhythms. Whereas patients with psychogenic seizure series are predominantly adults, particularly women, psychogenic seizures and CNS lesions seem to be more common in boys⁹ and men.

Meredith R. Lowe, John C. De Toledo, Alejandro A. Rabinstein, Marshall F. Giulla, Miami, FL

Corrections

Cerebral artery air embolism following an esophagogastroscopy: a case report
In the article “Cerebral artery air embolism following an esophagogastroscopy: a case report” by Akhtar et al. (Neurology 2001;56:136–137), an incorrect figure 1 was printed. The correct figure is printed below.

Familial occipital calcifications, hemorrhagic strokes, leukoencephalopathy, dementia, and external carotid dysplasia
In the article, “Familial occipital calcifications, hemorrhagic strokes, leukoencephalopathy, dementia, and external carotid dysplasia” by Iglesias et al. (Neurology 2000;55:1661–1667), figure 4 was printed incorrectly. The figure is reprinted below.

References


Copyright © 2001 by AAN Enterprises, Inc.
Cerebral artery air embolism following an esophagostroscopy: a case report

Neurology 2001;56;823
DOI 10.1212/WNL.56.6.823

This information is current as of March 27, 2001

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/56/6/823.full.html

Citations
This article has been cited by 2 HighWire-hosted articles:
http://www.neurology.org/content/56/6/823.full.html##otherarticles

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus