Increasing macrocephaly in a neonate
Ashley M. Groves, MB, BS; Justin J. Cross, MB, BS; Thida Win, MB, BS; and Deirdre Wright, MB, BS

Infantile macrocephaly has a myriad of causes including megalecephaly, intracranial mass, and CSF disturbance. An 8-week-old infant presented with increasing head circumference. Antenatal ultrasound was unremarkable, with biparietal diameter and head circumference on the 50th centile at 20 weeks’ gestation. At birth, head circumference was on the 90th centile; no other abnormalities were recognized. By 8 weeks, the child had clinical macrocephaly. The head circumference was on the 99th centile with an abnormal cranial posture and lower limb hypotonia. MRI at 4 months showed a small foramen magnum with impingement on the cervical cord without cord signal abnormality or syrinx formation (figure, A). Radiographs (figure, B and C) were performed and the diagnosis of achondroplasia confirmed. The infant underwent neurosurgical referral and is at present subject to 6-monthly reviews. It is of note that cervical impingement in patients with achondroplasia usually presents at an older age, but its occurrence has been reported shortly after birth.

Achondroplasia is a skeletal dysplasia with easily recognizable clinical and radiologic features, which, if missed, may lead to avoidable complications.


Figure A. Midsagittal T1-weighted MRI of the lower brain, showing a narrow foramen magnum, causing indentation of the cervicomedullary junction.

Figure B. Anteroposterior pelvic radiograph, demonstrating narrowing interpedicular distances and a “champagne glass” appearance to the pelvic floor due to square iliac bones, horizontal acetabular roofs, and narrow sciatic notches.

Figure C. Lateral lumbar radiograph shows sacral lordosis and anterior vertebral beaking.
Increasing macrocephaly in a neonate
Ashley M. Groves, Justin J. Cross, Thida Win, et al.
Neurology 2003;61:822
DOI 10.1212/01.WNL.000085869.22589.A4

This information is current as of September 22, 2003

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/61/6/822.full.html

References
This article cites 1 articles, 0 of which you can access for free at:
http://www.neurology.org/content/61/6/822.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Pediatric
http://www.neurology.org/cgi/collection/all_pediatric
MRI
http://www.neurology.org/cgi/collection/mri
Neonatal
http://www.neurology.org/cgi/collection/neonatal

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2003. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.