Campylobacter gene polymorphism as a determinant of clinical features of Guillain–Barré syndrome

M. Koga, MD, PhD; M. Takahashi, DVM, PhD; M. Masuda, MD, PhD; K. Hirata, MD, PhD; and N. Yuki, MD, PhD

Abstract—Background: Ganglioside epitopes on Campylobacter jejuni are hypothesized as the key to the development and characterization of Guillain–Barré syndrome (GBS), but a comprehensive theory has yet to be established. A C. jejuni gene, cst-II, involved in the biosynthesis of ganglioside-like lipo-oligosaccharide, shows a polymorphism (Asn/Thr51) that affects ganglioside epitopes. Objective: To examine the hypothesis that this polymorphism determines autoantibody reactivity, and thereby neurologic presentations in GBS. Methods: C. jejuni isolates were collected from 105 GBS (including its variants) and 65 uncomplicated enteritis patients. The authors examined the frequency of cst-II and polymorphism (Asn/Thr51) in connection with the bacterial ganglioside epitopes, autoantibody reactivities against GM1, GD1a, and GQ1b, and patients’ neurologic findings. Results: Neuropathic strains more frequently had cst-II, in particular cst-II (Thr51), than did enteritic ones (85% vs 52%; p < 0.001). Strains with cst-II (Asn51) regularly expressed the GQ1b epitope (83%), whereas those with cst-II (Thr51) had the GM1 (92%) and GD1a (91%) epitopes. The presence of these bacterial epitopes in neuropathy patients corresponded to autoantibody reactivity. Patients infected with C. jejuni (Asn51) more often were positive for anti-GQ1b IgG (56% vs 8%; p < 0.001) and had ophthalmoparesis (64% vs 13%; p < 0.001) and ataxia (42% vs 11%; p = 0.001). Patients who had C. jejuni (Thr51) more frequently were positive for anti-GM1 (88% vs 35%; p < 0.001) and anti-GD1a IgG (52% vs 24%; p = 0.006) and had limb weakness (98% vs 71%; p < 0.001). Conclusions: The genetic polymorphism of C. jejuni determines autoantibody reactivity as well as the clinical presentation of Guillain–Barré syndrome (GBS), possibly through modification of the host-mimicking molecule. The GBS paradigm is the first to explain the detailed pathogenesis of a postinfectious, autoimmune-mediated, molecular mimicry-triggering disorder.

NEUROLOGY 2005;65:1376–1381

Guillain–Barré syndrome (GBS) is characterized by limb weakness and loss of tendon reflexes, but has a variety of other neurologic presentations. Anti-GM1 and anti-GD1a IgG antibodies are associated with axonal GBS, whereas anti-GQ1b IgG antibody is specific to patients with Fisher syndrome (FS) or GBS with ophthalmoplegia. Campylobacter jejuni is the most frequent antecedent infectious agent in GBS. The critical factor that causes the development of neuropathy after C. jejuni infection is unknown, but the bacterial lipo-oligosaccharide (LOS) is a candidate because its terminal sugar regions mimic the sugar residues of the gangliosides GM1, GD1a, and GQ1b. The development of axonal GBS model after inoculation of rabbits with the GM1-like LOS has provided conclusive evidence for the hypothesis that the ganglioside-mimicry of C. jejuni LOS is a cause of GBS. However, determinant factor of anti-ganglioside antibody specificity and neurologic presentation in GBS remains unclear.

Determination of the complete genome sequence of C. jejuni NCTC 11168 showed that many LOS biosynthesis genes are encoded in a large cluster. A subsequent study identified the genes involved in the
transfer of galactose, N-acetylgalactosamine, and sialic acid to the LOS outer core.10 Because ganglioside classification is based on the sialylation type (see figure E-1 on the Neurology Web site at www.neurology.org),11 sialyltransferase-encoding genes may be associated with the variation in the ganglioside epitope on LOS. It was reported that cst-II, a gene encoding sialyltransferase,10,12 was present in all eight strains with GG1b-like LOS and proposed that its presence is associated with various ganglioside-like LOSs, although cst-II frequency did not differ between the GBS/FS and uncomplicated enteritis strains studied.10 In contrast, based on tests of 28 GBS isolates, it was reported that the cst-II gene is more often present in GBS isolates than in enteritis isolates.14 Whether the presence of this gene is a risk factor for developing neuropathy after C jejuni enteritis has yet to be proved.

The ganglioside-like structure of the C jejuni LOS is, in part, determined by the multiple mechanisms the bacterium uses to turn on or off a gene or to modulate the substrate specificities of its glycosyltransferases, as well as by different gene contents.15 Interestingly, variation in the nucleotide sequence of cst-II might affect enzymatic activity; Cst-II (Thr51) has only α-2,3-sialyltransferase activity (monofunctional), whereas Cst-II (Asn51) has both α-2,3- and α-2,8-sialyltransferase activities (bifunctional).15 Because both α-2,3- and α-2,8-sialyltransferase activities are required for the biosynthesis of GG1b mimics such as GT1a- or GD1c-like LOS,5,7 cst-II polymorphism is assumed to affect autoantibody reactivities through change in the ganglioside epitope on the LOS outer core, resulting in the diverse neurologic features shown by patients with GBS. In this study we used 105 C jejuni isolates from patients with GBS or a clinical variant and compared cst-II gene frequency in the neuropathic and enteric strains. We also examined the hypothesis that the genetic polymorphism of the bacterium produces the differences in the clinical manifestation of GBS.

Methods. Bacterial strains and patients. Since 1990, we have received more than 8,000 requests from Japanese physicians to test serum anti-ganglioside antibodies from patients presenting with various neurologic disorders. On receipt of serum samples from patients with GBS or a clinical variant, we request the primary physicians to do a stool culture and to send the patient’s stool for C jejuni isolation. From 1990 to 2002, 81 C jejuni strains were isolated successfully by one of the authors (M.T.), Health for Mary Physicians to do a stool culture and to send the patient’s test serum anti-ganglioside antibodies from patients presenting with GBS or a clinical variant and compared cst-II gene frequency in the neuropathic and enteric strains. We also examined the hypothesis that the genetic polymorphism of the bacterium produces the differences in the clinical manifestation of GBS.

cst-II Gene frequency and polymorphism (Thr1 Asn51). PCR and direct nucleotide sequence analyses showed that the cst-II gene more often was present in neuropathic than enteritic strains (table 1). Although the 51st codon of cst-II is reported to be AAT (corresponding to Asn) or ACC (Thr),18,19 some strains in our study had AAC (Asn). This indicates that a single base change (A to C or C to A) which may occur during infection can alter the substrate specificity of Cst-II (monofunctional or bifunctional). cst-II (Thr51) was more common in the neuropathic (50%) than enteritic (25%) strains (p = 0.001), whereas cst-II (Asn51) did not differ (34% vs 26%; p = 0.31). Also, 9 of 16
Table 1 Comparison of genetic and phenotypic properties of neuropathic and enteric Campylobacter jejuni strains

<table>
<thead>
<tr>
<th></th>
<th>Neurpathic strains, n = 105</th>
<th>Enteric strains, n = 65</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gene</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cst-II</td>
<td>89 (85)</td>
<td>33 (51)</td>
<td><0.001</td>
</tr>
<tr>
<td>cst-III</td>
<td>9 (9)</td>
<td>15 (23)</td>
<td>0.012</td>
</tr>
<tr>
<td>GM1 epitope*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cholera toxin</td>
<td>62 (59)</td>
<td>25 (38)</td>
<td>0.01</td>
</tr>
<tr>
<td>GB2</td>
<td>63 (60)</td>
<td>25 (38)</td>
<td>0.007</td>
</tr>
<tr>
<td>S6960</td>
<td>60 (57)</td>
<td>22 (34)</td>
<td>0.004</td>
</tr>
<tr>
<td>GD1a epitope*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GB1</td>
<td>51 (49)</td>
<td>13 (20)</td>
<td><0.001</td>
</tr>
<tr>
<td>S5174</td>
<td>49 (47)</td>
<td>12 (18)</td>
<td><0.001</td>
</tr>
<tr>
<td>GQ1b epitope*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FS1</td>
<td>22 (21)</td>
<td>13 (20)</td>
<td>1.0</td>
</tr>
<tr>
<td>S7577</td>
<td>32 (30)</td>
<td>17 (26)</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Values are n (%).

* The reagents used are the monoclonal antibodies (GB1 [anti-GM1], GB2 [anti-GM1], and FS1 [anti-GQ1b]), and sera from patients with Guillain-Barré syndrome (S6960 [anti-GM1] and S5174 [anti-GD1a]) or Fisher syndrome (S7577 [anti-GQ1b]). Cholera toxin (B-subunit) is a ligand for GM1-oligosaccharide structure.

Table 2 Association of bacterial properties with cst-II content and polymorphism in neuropathic Campylobacter jejuni strains

<table>
<thead>
<tr>
<th>Lipo-oligosaccharide</th>
<th>cst-II</th>
<th>cst-II (Asn51)</th>
<th>cst-II (Thr51)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Present Absent p Value</td>
<td>Present Absent p Value</td>
<td>Present Absent p Value</td>
<td></td>
</tr>
<tr>
<td>Lipo-oligosaccharide</td>
<td>n = 89 n = 16</td>
<td>n = 36 n = 69</td>
<td>n = 53 n = 52</td>
</tr>
<tr>
<td>GM1 epitope*</td>
<td>53 (60) 7 (44) 0.28</td>
<td>4 (11) 56 (81) <0.001</td>
<td>49 (92) 11 (21) <0.001</td>
</tr>
<tr>
<td>GD1a epitope*</td>
<td>48 (54) 1 (6) <0.001</td>
<td>0 49 (71) <0.001</td>
<td>48 (91) 1 (2) <0.001</td>
</tr>
<tr>
<td>GQ1b epitope*</td>
<td>31 (35) 1 (6) 0.04</td>
<td>30 (83) 2 (3) <0.001</td>
<td>1 (2) 31 (60) <0.001</td>
</tr>
</tbody>
</table>

Values are n (%).

* Judged by results of thin-layer chromatography with immunostaining of patients’ sera (S6960 [anti-GM1], S5174 [anti-GD1a], and S7577 [anti-GQ1b]) having high anti-ganglioside antibody titer.
GD1a epitope and anti-GD1a IgG (p value = 0.04); and GQ1b epitope and anti-GQ1b IgG (p < 0.001).

As expected, cst-II polymorphism was closely related to serum anti-ganglioside autoantibody reactivities, and therefore to neurologic features, whereas gene content was not (table 3). Patients from whom C jejuni (Asn51) had been isolated more often had serum anti-GQ1b IgG autoantibody, cranial nerve palsies, and ataxia. In contrast, C jejuni (Thr51) was associated with anti-GM1 and anti-GD1a IgG antibodies and limb weakness. The diagnosis was GBS for most patients with C jejuni (Thr51), whereas it was GBS for 47% and FS for 39% of patients with C jejuni (Asn51). Conversely, compared to the enteritis patients, FS patients more often had been infected by C jejuni (Asn51) (70% vs 26%; p value = 0.001), whereas GBS patients had been by C jejuni (Thr51) (64% vs 25%; p value < 0.001). Variation in the 53rd codon was not associated with any type of autoantibody or neurologic feature in spite of its association with ganglioside-like LOS (data not shown).

Discussion

The pathogenesis of many post-infectious disorders is still unknown, no autoantigens or virulence factors having been identified. For example, why some group A streptococci can cause acute rheumatic fever and others acute glomerulonephritis is unclear. In contrast, we are the first to show the detailed molecular mechanism of GBS after C jejuni enteritis, based on our and others findings that the genetic polymorphism of the bacterium alters the substrate specificity of the LOS biosynthesis enzyme and that autoantibody reactivity determines the clinical presentation of GBS. These findings suggest that the genetic polymorphism of antecedent agents determines autoantibody reactivities and clinical manifestations through change to the host-mimicking molecule in some post-infectious disorders. We believe that GBS is the first paradigm to explain the detailed pathogenesis of a post-infectious, autoimmune-mediated, molecular mimicry-triggering disorder.

We confirmed results of a previous report that cst-II more frequently exists in GBS than in enteritis isolates, indicative that its presence is a risk factor for developing GBS. However, considerable numbers of strains from patients with uncomplicated enteritis also had cst-II gene, indicating that cst-II gene is necessary but not adequate for initiating autoimmune response, although cst-II genotype is important in determining antibody reactivity when autoimmune response is triggered. Certain other genes (e.g., cst-III or an unidentified gene) might produce the enzyme protein instead, subsequently sialylating LOS. Three genes, cst-I, -II, and -III, are reported to encode sialyltransferase protein, but cst-I was lacking in some strains with sialylated LOS and therefore is unlikely to be responsible for LOS sialylation. Because Cst-III appears to have only α-2,3-sialyltransferase activity (monofunction), cst-II content must be essential for α-2,8-sialyltransferase activity and thereby biosynthesis of the GQ1b epitope. Most of the previous studies have failed to find a specific C jejuni genotype for GBS and FS. It was recently reported that the class A LOS biosynthesis locus was over-represented in GBS-associated as compared to enteritis strains, whereas all four of the FS-related strains belonged to class B. The authors suspected that the frequent expression of a GM1 epitope in class A and a GQ1b epitope in class B strains is responsible for the development of GBS and FS. Their findings, however, do not provide the answers as to which difference leads to diverse...
ganglioside-mimics (GM1 and GQ1b) in spite of there being almost the same class A and B gene profiles.\(^ {15}\) In contrast, our data clearly indicate that both presence and polymorphism of bacterial \(\text{cst-II}\) have a major role in the type of ganglioside-like structure on LOS, thereby determining autoantibody reactivity and the pattern of neurologic presentation. Phase variation owing to a homopolymeric G-tract in \(\text{cst-II}\) or other LOS synthesis genes also may be related to what ganglioside epitopes are present.\(^ {10}\) Along with those of a previous study,\(^ {15}\) however, our findings suggest that mainly it is variation in the \(\text{cst-II} 51\text{st}\) codon and supplemental variation in the 53rd codon that determine which ganglioside epitopes are present on LOS, but only the former was related to the autoantibody reactivity in and neurologic features of neuropathy patients. Interestingly, \(Hae-
ophilus influenzae,\) a pathogen recently suggested to cause GBS and FS,\(^ {27,27}\) also has sialylated LOS.\(^ {38}\) Three genes (\(\text{lic3A, siaA, lsgB}\)) have been cloned for that sialylation enzyme.\(^ {39,40}\) Whether the polymorphism of \(H\ influenzae\) genes also is related to autoantibody reactivity and consequently to the neuroplogic features of GBS and FS requires investigation. \(C\ jejuni\) strains which had been isolated from anti-GQ1b antibody-positive patients often carried GQ1b epitope on the LOS.\(^ {41}\) The specificity of anti-ganglioside antibody induced by immunization of \(C\ jejuni\) LOS overall corresponds to ganglioside epitopes on the LOS in rabbits.\(^ {42}\) In this study, we showed that the target ganglioside (GM1, GD1a, or GQ1b) for serum autoantibody corresponds to the LOS-mimicking gangliosides of isolates from individual patients. However, other gangliosides such as GM1b and GalNAc-GD1a could be target antigens for autoantibodies in GBS\(^ {30}\) and further investigation is necessary to explain the variety of the clinical manifestation of GBS in more detail.

Acknowledgment

The authors thank Dr. Michel Gilbert (Institute for Biologic Sciences, National Research Council of Canada, Ottawa, Canada) for critical reading of the paper; Saiko Koike and Takashi Namatame (Institute for Medical Science, Dokkyo University School of Medicine, Tochigi, Japan) for help with the bacterial and sequence analyses; Maki Okazaki (Department of Neurology, Dokkyo University School of Medicine, Tochigi, Japan) for technical assistance; and Dr. Yukihiro Nishimoto (Department of Pediatrics, Kian General Hospital, Wakayama, Japan) and Dr. Shigeru Matsushita (Tama Branch Laboratory, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan) for providing the \(C\ jejuni\) strains from enteritis patients.

References

9. Parkhill J, Wren BW, Mungall K, et al. The genome sequence of the food-borne pathogen \(C\ jejuni\) reveals hypervariable se-
syltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-MHz \(^1\)H and \(^1\)C NMR analysis. J Biol Chem 2000; 275:3896–3906.
11. Svennerholm L. Chromatographic separation of human brain gangli-
17. Yuki N, Odaka M, Hirata K. Acute opthalmoparesis (without ataxia) associated with anti-GQ1b IgG antibody: clinical features. Ophthal-
27. Koga M, Gilbert M, Li J, et al. Antecedent infections in Fisher syn-
28. Schägger H, von Jagow G. Tricine–sodium dodecyl sulfate–poly-
acylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 1987;166:368–379.

Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception

Frank Birklein, MD, PhD; Roman Rolke, MD; and Wibke Müller-Forell, MD, PhD, Mainz, Germany

Functional imaging suggests that the insular cortex is important for pain processing.1 We performed quantitative sensory testing (QST) in a 64-year-old man with acute left insular infarct. At day 5, diffusion-weighted MRI (figure) and QST (warm, cold, heat, and cold pain; tactile, vibratory, pinprick, and pressure pain) were performed. Contralateral to the infarct, the patient did not feel cold (≤32 °C), cold pain (≤32 °C), or pinprick pain (>630 mN). The other sensory modalities were normal. There were no other neurologic disturbances apart from a mild receptive aphasia. This case illustrates that isolated insular infarction indeed leads to sensory disturbances,2 which might even be modality specific.

Copyright © 2005 by AAN Enterprises, Inc.

Address correspondence and reprint requests to Dr. F. Birklein, Department of Neurology, University of Mainz, Langenbeckstrasse 1, D-55101 Mainz, Germany; e-mail: birklein@neurologie.klinik.uni-mainz.de

NeuroImages

Figure. Diffusion-weighted MR image shows the acute ischemic infarct, which is restricted to the middle/posterior left insular cortex.
Isolated insular infarction eliminates contralateral cold, cold pain, and pinprick perception
Frank Birklein, Roman Rolke and Wibke Müller-Forell
Neurology 2005;65;1381
DOI 10.1212/01.wnl.0000181351.82772.b3

This information is current as of November 7, 2005

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/65/9/1381.full.html

References
This article cites 2 articles, 1 of which you can access for free at:
http://www.neurology.org/content/65/9/1381.full.html##ref-list-1

Citations
This article has been cited by 2 HighWire-hosted articles:
http://www.neurology.org/content/65/9/1381.full.html##otherarticles

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus