Fragile X syndrome (FXS) (OMIM 309550), the most common inherited form of mental retardation, is characterized by cognitive impairment, attention-deficit/hyperactivity disorder, autistic behavior, seizures, and additional clinical manifestations that involve other organs than the brain. FXS is caused by mutations of the fragile X mental retardation 1 (FMR1) gene (Xq27.3). The mutation is usually represented by the abnormal expansion of the CGG triplet repeats located in the 5’ untranslated region of the gene, with hypermethylation of the promoter and repeated sequences. These so-called FRAXA full mutations cause transcriptional silencing and ultimately lead to deficit of the gene product, the fragile X mental retardation protein (FMRP).1

Periventricular heterotopia (PH) is a neuronal migration disorder consisting of nodules of gray matter located along the lateral ventricles. Classic PH with bilateral contiguous and symmetric nodules has been associated with mutations of the FLNA gene (Xq28) (OMIM 300049).2 A rare recessive form of bilateral PH with severe mental retardation has been reported owing to mutations of the ARFGEP2 gene.3 Some patients with PH associated with chromosomal abnormalities of the distal portion 5p have been described, suggesting an additional distinctive syndrome.3 However, in most cases of PH, no mutations of known genes are found.3 Considering the phenotypic diversity of PH, wide genetic heterogeneity can be hypothesized.

Here, we describe two patients with PH and typical FXS. This association expands the spectrum of phenotypes featuring PH and suggests that the FMR1 product (FMRP) may be involved in neuronal migration.

Methods. We studied two unrelated individuals using clinical information, brain MRI, EEGs, and cognitive testing. DNA was extracted from peripheral blood leukocytes. Southern blot was performed: DNA was subjected to double digestion with EcoRI/EagI and electrophoresed on agarose gel. Blotting was performed with Hybond N+ membrane (Amersham Bioscience); the hybridization probe StB12.3 was radioactively labeled by the Random Primers DNA Labeling System (Invitrogen). Autoradiography was performed for 1 to 4 days. PCR of FMR1 CGG repeats was performed with GC-Rich System (Roche) and primers e (6-FAM 5’-GCTCAGCTCCGTTTCGGTTTCACTTCCGGT-3’) and f (5’-AGCCCCGACTTCCAGCTCCTCCA-3’) according to the manufacturer. The amplicons were sequenced (ABI Prism 310) and the size of alleles determined by the GENESCAN software (Applera).

High-resolution karyotyping (>550 bands) was performed in proband 2. Molecular karyotyping was performed in both probands through array CGH with the Agilent kit. This platform is a 60-mer oligonucleotide-based microarray that allows genome-wide survey and molecular profiling of genomic aberrations with 75-kb resolution. DNA of patients and a male control was double digested with Rsal and AluI (Promega). Each digested DNA was purified and labeled by random priming (Invitrogen) using Cy5-dUTP for the patients and Cy3-dUTP for control DNA. Hybridization was performed after probes denaturation and pre-annealing with Cot-1 DNA. After two washing steps, the array was analyzed with the Agilent scanner and the Feature Extraction software (version 8.0). A graphic overview was obtained using CGH analytics software (version 3.1).

FLNA coding regions were amplified by PCR, and the mutation screening was performed by Wave denaturing high-performance liquid chromatography (Transgenicmic, La Jolla, CA).4

Results. Proband 1 is a 13-year-old boy with mental retardation and attention deficit disorder. At age 7 years, his IQ score was 40 (Wechsler Preschool and Primary Scale of Intelligence). Clinical examination revealed relative macrocephaly, large ears, prominent jaw, scoliosis, and macroorchidism. Interictal EEG showed spike activity in the right centrottemporal region, but no seizures were reported. Brain MRI showed three heterotopic nodules beneath the frontal horn of the left lateral ventricle, the right trigon (figure, A) and the left occipital horn, as well as underrosetted hippocampi (figure, C). Southern blot analysis revealed a condition of mosaicism with the presence of a
FRAXA full mutation characterized by a large and heterogeneous expansion (Δ>1.2 kb) of hypermethylated CGG repeats and an additional unmethylated fragment of approximately 2.6 kb. This latter fragment was consistent with the size (198 bp) of the product obtained by PCR amplification with primers immediately flanking the repeat region. The sequence analysis showed this fragment to be the result of a deletion limited to the CGG triplets, likely to have occurred in the early embryo within the extremely unstable region of repeated sequences. Karyotype was normal after array CGH analysis. No mutations of FLNA were found.

Proband 2 is a 4.5-year-old boy. At age 6 months, he underwent surgery for congenital labioschisis. Cognitive testing at age 4 years (Griffiths Scale) showed an IQ of 54 with selective language impairment. Clinical examination revealed macrocephaly, large ears, and prominent jaw. Interictal EEG showed bilateral spike activity in the centroparietal regions, but no seizures were reported. Brain MRI showed a single heterotopic nodule beneath the right lateral ventricle (figure, B). Molecular analysis of FMR1 showed a classic FRAXA full mutation with a heterogeneous expansion (Δ>1 kb) of the CGG repeat fragments and complete hypermethylation of the region. High-resolution chromosome analysis and array CGH analysis were normal. No mutations of FLNA were found.

Discussion. The two patients described had typical FXS and PH, a previously unreported association. Brain abnormalities have been documented by MRI scan in patients with FXS, and these include decreased size of the cerebellar vermis and the superior temporal gyrus and increased volume of the hippocampus, amygdala, caudate nucleus, and thalamus. Anatomic and histologic examinations of the brains of patients with FXS showed dendritic spine dysgenesis in the neocortex, which was considered a nonspecific indicator of abnormally delayed dendritic development. Although gray matter heterotopia has not been previously observed, small clusters of neurons scattered throughout the subcortical white matter and a small olivary heterotopia below the inferior cerebellar peduncle were reported in two neuropathologic studies. Our patients showed isolated or scattered periventricular heterotopic nodules, but diffuse neuronal heterotopia beyond the resolution of MRI is possible.

Structural brain abnormalities in FXS have been attributed to the lack of FMRP with consequent impairment of synaptic plasticity during early brain development. It is the transcriptional silencing of FMR1, in the FRAXA full mutation, that leads to FMRP deficiency, with consequent impairment of synaptic plasticity and, ultimately, of cognitive function.

FMRP, whose function has not been completely elucidated, has been described as an RNA-binding protein that complexes with messenger ribonucleoproteins in the neuron's cytoplasm interacting with specific RNA transcripts and other proteins.

FMRP, as a translational suppressor, might also regulate local protein synthesis of specific RNAs in the dendrites in response to synaptic stimulation signals. Recent studies about the role of mRNA ligands specifically regulated by FMRP identified several targets including microtubule-associated protein 1B and semaphorin 3F that are involved in axon guidance and cell motility.

PH, most often bilateral and symmetric, has been observed in several syndromes. The main syndromes with PH include classic X-linked bilateral periventricular nodular heterotopia (BPNH) due to FLNA mutations, and BPNH with frontonasal dysplasia, BPNH with syndactyly and severe mental retardation, which have been described predominantly in boys. Unilateral or bilateral asymmetric PH has rarely been associated with FLNA mutations, but it is not known to be consistently related to any specific syndrome. FXS should be considered in the differential diagnosis of patients with PH.

Acknowledgment

The authors thank the patients and their families.

References

NeuroImages

Extravasation of hyperalimentation into the spinal epidural space from a central venous line

M. Scott Perry, MD; and Lisa Billars, MD, Atlanta, GA

A 7-week-old ex-33-week girl developed fever and seizure. Blood and urine cultures were negative. Lumbar puncture revealed milky-white fluid with normal laboratory values except an elevated glucose (8,867 mg/dL, nl 40 to 70 mg/dL). Abdominal x-ray revealed migration of the right saphenous percutaneous central venous line (PCVL) (figure). MRI (figure) demonstrated hyperintensity within the spinal epidural plexus. Extravasation of hyperalimentation into the epidural space is a rare complication of PCVLs in neonates. A PCVL enters the lumbar plexus by way of the ascending lumbar vein which connects to the common iliac vein at L4-5.

Figure. (A) AP view of the abdomen revealing a central venous line in the midline (arrow). (B) Lateral view of the abdomen demonstrating the central venous line within the lumbar spine (arrow). (C) T1-weighted sagittal image of the spine with hyperintensity evident in the epidural venous plexus (arrow).

Disclosure: The authors report no conflicts of interest.

Address correspondence and reprint requests to Dr. Perry, Emory University Department of Pediatrics, Division of Child Neurology, 2015 UpperGate Drive, NE Atlanta, GA 30322; e-mail: scott_perry@oz.ped.emory.edu

Copyright © 2006 by AAN Enterprises, Inc.

Extravasation of hyperalimentation into the spinal epidural space from a central venous line

M. Scott Perry and Lisa Billars

Neurology 2006;67:715
DOI 10.1212/01.wnl.0000219648.78038.5b

This information is current as of August 21, 2006

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>http://www.neurology.org/content/67/4/715.full.html</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 1 articles, 0 of which you can access for free at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/content/67/4/715.full.html##ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s):</td>
</tr>
<tr>
<td></td>
<td>All Genetics</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org//cgi/collection/all_genetics</td>
</tr>
<tr>
<td></td>
<td>Cortical dysplasia</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org//cgi/collection/cortical_dysplasia</td>
</tr>
<tr>
<td></td>
<td>Trinucleotide repeat diseases</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org//cgi/collection/trinucleotide_repeat_diseases</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online:</td>
</tr>
<tr>
<td></td>
<td>http://www.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>