Teaching NeuroImage: Convergence spasm associated with midbrain compression by cerebral aneurysm

Konrad P. Weber, MD
Matthew J. Thurtell, MBBS
G. Michael Halmagyi, MD

A 72-year-old woman presented with intermittent diplopia. She had a history of vascular disease, but no history of stroke or psychiatric disturbance. On examination, she developed convergence spasm with associated miosis following fixation on near targets and during horizontal smooth pursuit (video, figure 1). The spasms were terminated with a blink. She had no ptosis, her eye movements were normal in range, and her pupils were equal in size with normal reactions to light. Neurologic examination was otherwise unremarkable. Five years prior to her current presentation, a left-sided terminal carotid artery aneurysm had been incidentally detected. The aneurysm gradually expanded to a diameter of 2.4 cm and compressed the midbrain (figure 2). The intermittent diplopia had developed in the months following endovascular coiling of the aneurysm.

Convergence spasm is characterized by the inappropriate appearance of the near triad, which consists of convergence, miosis, and accommodation. Most patients are young and the cause is psychiatric; a focal lesion is rarely found. Since the neural substrate for the near triad is located in the midbrain, convergence spasm could occur...
with a midbrain lesion. In our patient, isolated convergence spasm may have been a manifestation of midbrain compression. Thus, in patients presenting with convergence spasm, the presence of other focal neurologic signs or the absence of psychiatric history, especially in the elderly, should prompt neuroimaging. Furthermore, it is important not to mistake convergence spasm for bilateral sixth nerve palsies; miosis on attempted lateral gaze is diagnostic of convergence spasm.2

ACKNOWLEDGMENT
The authors thank Dr. Geoffrey D. Parker for help with the interpretation of the MRI.

REFERENCES
Teaching NeuroImage: Convergence spasm associated with midbrain compression by cerebral aneurysm
Konrad P. Weber, Matthew J. Thurtell and G. Michael Halmagyi
Neurology 2008;70:e49-e50
DOI 10.1212/01.wnl.0000308952.85042.bf

This information is current as of May 20, 2008