PEARL: HYPERDENSE MCA SIGN
- The hyperdense middle cerebral artery (MCA) sign is an insensitive but specific sign suggestive of vascular thrombosis in patients presenting with ischemic stroke.

OY-STERS: PSEUDOHYPERDENSE MCA SIGN
- The presence of a true hyperdense sign can be confirmed by measuring attenuation value as compared to the normal-appearing contralateral side.
- Mimics of a hyperdense sign (i.e., a pseudohyperdense sign) include vascular calcification, raised hematocrit, and intravenous contrast medium.
- Careful attention should also be paid to the surrounding brain parenchyma to assess for hypodensity or any differentiating features suggestive of tumor, infection, or contusion.

Unenhanced CT of the head is usually the first diagnostic study performed for the investigation of acute neurologic signs and symptoms. Specific diagnostic features are helpful for accurate and prompt management of these patients. A hyperdense sign of the MCA was first described in 1983 as an indirect sign of ischemic stroke. Subsequently, numerous articles have detailed the causes of this sign, measured the attenuation differences between normal and thrombosed vessels, and elucidated other conditions which may give a false impression of a hyperdense MCA sign. We present a case report of a patient who presented with seizures and had a pseudohyperdense MCA sign. We discuss the differential diagnosis of hyperdense MCA sign and features to differentiate it from pseudohyperdense MCA sign.

CASE REPORT A 60-year-old man presented with generalized seizures. Apart from confusion, there were no other neurologic abnormalities. A CT was performed which demonstrated an apparent hyperdense MCA on the left side with hypodensity of the adjacent brain parenchyma (figure, A). However, the absolute attenuation value of the hyperdense-appearing left MCA was 36 Hounsfield units (HU) and on the normal-appearing right side was 35 HU. MRI and magnetic resonance angiography demonstrated a mildly enhancing infiltrating left frontal and temporal mass (figure, B) with a patent MCA (figure, C) and no evidence of infarct. Biopsy confirmed a low-grade astrocytoma.

DISCUSSION The hyperdense MCA sign on unenhanced CT of the head in patients presenting with presumed acute ischemic stroke has been reported to have high specificity and positive predictive value for thromboembolic occlusion of the MCA. It is associated with poor prognosis. In a study to establish objective criteria for hyperdense MCA sign, the authors concluded that an absolute attenuation value of abnormal MCA above 43 HU and a ratio of dense abnormal MCA attenuation to normal-appearing contralateral MCA attenuation of more than 1.2 correctly identified all the hyperdense MCAs associated with acute ischemic stroke.

It is important, however, to recognize conditions in which the hyperdense MCA sign is misleading. It has been noted that the MCA may appear hyperdense without any intraluminal thrombosis. This pseudohyperdense MCA sign may be seen in the presence of conditions affecting the density of intraluminal content, wall density, and extraluminal density. Intraluminal hyperdensity may be due to increased hematocrit, contrast medium from a different source, or increased serum density from ingested substances such as cocaine. Partial volume averaging artifact from vascular wall hyperdensity, such as in vascular wall calcification, can also result in pseudohyperdensity. This may be seen with diabetes, hypertension, and elevated cholesterol, or it may be idiopathic. The hyperdense MCA sign is generally transient, but hyperdensity due to vessel wall calcifi-
cation will be stable, and so comparison with a previous study, if available, will help to confirm the diagnosis. Another important cause of pseudohyperdense MCA sign is a normal density MCA appearing hyperdense due to adjacent abnormal parenchymal hypodensity. This may appear in the setting of infection, tumor, or contusion. Comparison of the attenuation value of the abnormal-appearing vasculature with other vessels in the intracranial cavity will reveal no significant differences, as it did in our case. Abnormal enhancement may also help to differentiate ischemia from infection and tumor. Characteristic areas of involvement may help diagnose infections such as herpes encephalitis. Evidence of calcification may also suggest a neoplastic or dysplastic lesion. Further imaging with MRI can help to distinguish these situations.

REFERENCES

Pearls & Oy-sters: Hyperdense or pseudohyperdense MCA sign: A Damocles sword?
Bhawna Jha and Milind Kothari
Neurology 2009;72:e116-e117
DOI 10.1212/WNL.0b013e3181a92b3b

This information is current as of June 8, 2009

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/72/23/e116.full.html

References
This article cites 4 articles, 2 of which you can access for free at:
http://www.neurology.org/content/72/23/e116.full.html#ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://www.neurology.org/content/72/23/e116.full.html#otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://www.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
All Clinical Neurology
http://www.neurology.org/cgi/collection/all_clinical_neurology
All Imaging
http://www.neurology.org/cgi/collection/all_imaging

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright . All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.