Teaching NeuroImages: Harlequin syndrome caused by lesion of sympathetic regulatory neurons

Saeed Bohlega, MD, FAAN
Bent Stigsby, MD, PhD
Fahd Al Mohaileb, MD

A 48-year-old woman presented with a 6-year history of recurrent episodes of exertional asymmetric flushing of the face and head. After exercise, she observed a distinct line of demarcation between the left half of her face, which was red, and the right half, which retained its normal color (figure, A). Decreased right facial temperature and sweating were also noted. These episodes resolved after 1 hour of rest. She had no ptosis or myosis. She had mild trauma to the right neck 2 years prior to this complaint.

MRI of head, neck, and cervicobrachial plexus were normal. CT angiogram of the right internal carotid artery showed a small segmented stenosis (figure, B and C). Loss of flushing on one side of the face indicates an ipsilateral lesion of sympathetic neurons innervating the face. The absence of Horner syndrome indicates intact oculosympathetic fibers.1,2 This rare and clinically striking syndrome may result from occult carotid dissection.3

REFERENCES

Figure Clinical and radiologic features of harlequin syndrome

(A) The patient after exertion showing loss of right-sided flushing and sweating of the face and head. The left side showed normal flushing. (B) Three-dimensional and (C) 2-dimensional CT angiogram of the carotid artery showing stenosis at the origin of the right internal carotid artery.

From the Departments of Neurosciences and Radiology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia.

Disclosure: Dr. Bohlega reports no disclosures. Dr. Stigsby serves on the editorial board of Clinical Neurology and Neurosurgery. Dr. Al-Mohaileb reports no disclosures.
Teaching NeuroImages: Harlequin syndrome caused by lesion of sympathetic regulatory neurons
Saeed Bohlega, Bent Stigsby and Fahd Al Mohaileb
Neurology 2010;74:e106
DOI 10.1212/WNL.0b013e3181e3963c

This information is current as of June 14, 2010

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/74/24/e106.full.html

References
This article cites 3 articles, 1 of which you can access for free at:
http://www.neurology.org/content/74/24/e106.full.html##ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://www.neurology.org/content/74/24/e106.full.html##otherarticles

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus