Selective corticospinal tract involvement in late-onset Krabbe disease

R. Sehgal, MD*
S. Sharma, DM*
N. Sankhyan, DM
A. Kumar, MD
S. Gulati, MD

A 4-year-old girl presented with increasing falls and progressive limb stiffness noticed for 2 months. There was no history of cognitive decline, seizures, or vision impairment. Examination revealed spastic quadripareisis, with no sensory or cerebellar abnormalities. A suggestive MRI scan of the brain (figure) and reduced galactocerebrosidase activity in leukocytes confirmed the diagnosis of late-onset Krabbe disease. MRI in late-onset Krabbe disease classically shows parieto-occipital periventricular white matter and posterior corpus callosal signal changes with sparing of subcortical U fibers and cerebellar white matter. Isolated corticospinal tract involvement is an unusual pattern described in adult- and late-onset forms of Krabbe disease. In the setting of childhood neurodegeneration, similar changes have also been described in X-linked adrenoleukodystrophy, acyl–coenzyme A (CoA) oxidase deficiency, and 3-hydroxy-3-methylglutaryl–CoA lyase deficiency.

AUTHOR CONTRIBUTIONS
R.S., S.S., and N.S. did the clinical/diagnostic workup of the child and reviewed the literature. A.K. provided neuroradiologic inputs. R.S., S.S., N.S., A.K., and S.G. contributed to the content of the manuscript. S.G. was in charge of the case overall and provided final approval of the manuscript.

REFERENCES

Figure
Axial (A) and coronal (B) fluid-attenuated inversion recovery MRI scans show bilateral symmetric hyperintense signal changes involving the corticospinal tracts. (C) Sagittal T2-weighted MRI shows the hyperintense signal along the corticospinal tract from the cortical area extending into the internal capsule.
Teaching NeuroImages: Selective corticospinal tract involvement in late-onset Krabbe disease
Neurology 2011;77:e20
DOI 10.1212/WNL.0b013e318225aaf5

This information is current as of July 18, 2011

Updated Information & Services
- Including high resolution figures, can be found at: http://www.neurology.org/content/77/3/e20.full.html

References
- This article cites 3 articles, 1 of which you can access for free at: http://www.neurology.org/content/77/3/e20.full.html#ref-list-1

Citations
- This article has been cited by 1 HighWire-hosted articles: http://www.neurology.org/content/77/3/e20.full.html#otherarticles

Subspecialty Collections
- This article, along with others on similar topics, appears in the following collection(s):
 - All Cognitive Disorders/Dementia: http://www.neurology.org/cgi/collection/all_cognitive_disorders_dementia
 - All Demyelinating disease (CNS): http://www.neurology.org/cgi/collection/all_demyelinating_disease_cns
 - All Pediatric: http://www.neurology.org/cgi/collection/all_pediatric
 - MRI: http://www.neurology.org/cgi/collection/mri

Permissions & Licensing
- Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/misc/about.xhtml#permissions

Reprints
- Information about ordering reprints can be found online: http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology © is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2011 by AAN Enterprises, Inc. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.