A 4-year-old girl presented with increasing falls and progressive limb stiffness noticed for 2 months. There was no history of cognitive decline, seizures, or vision impairment. Examination revealed spastic quadriparesis, with no sensory or cerebellar abnormalities. A suggestive MRI scan of the brain (figure) and reduced galactocerebrosidase activity in leukocytes confirmed the diagnosis of late-onset Krabbe disease. MRI in late-onset Krabbe disease classically shows parieto-occipital periventricular white matter and posterior corpus callosal signal changes with sparing of subcortical U fibers and cerebellar white matter. Isolated corticospinal tract involvement is an unusual pattern described in adult- and late-onset forms of Krabbe disease. In the setting of childhood neurodegeneration, similar changes have also been described in X-linked adrenoleukodystrophy, acyl–coenzyme A (CoA) oxidase deficiency, and 3-hydroxy-3-methylglutaryl-CoA lyase deficiency.1,2,3

AUTHOR CONTRIBUTIONS
R.S., S.S., and N.S. did the clinical/diagnostic workup of the child and reviewed the literature. A.K. provided neuroradiologic inputs. R.S., S.S., N.S., A.K., and S.G. contributed to the content of the manuscript. S.G. was in charge of the case overall and provided final approval of the manuscript.

REFERENCES

*These authors contributed equally to this work.

From the Division of Pediatric Neurology, Department of Pediatrics (R.S., S.S., N.S., S.G.), and Department of Radiodiagnosis (A.K.), All India Institute of Medical Sciences, New Delhi, India.

Disclosure: Dr. Sehgal, Dr. Sharma, Dr. Sankhyan, and Dr. Kumar report no disclosures. Dr. Gulati serves on the editorial board of the Indian Journal of Pediatrics and has received research support from the NIH, Autism Speaks, and National Trust.
Teaching NeuroImages: Selective corticospinal tract involvement in late-onset Krabbe disease

Neurology 2011;77:e20
DOI 10.1212/WNL.0b013e318225aaf5

This information is current as of July 18, 2011

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/77/3/e20.full.html

References
This article cites 3 articles, 1 of which you can access for free at:
http://www.neurology.org/content/77/3/e20.full.html##ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://www.neurology.org/content/77/3/e20.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cognitive Disorders/Dementia
http://www.neurology.org/cgi/collection/all_cognitive_disorders_dementia
All Demyelinating disease (CNS)
http://www.neurology.org/cgi/collection/all_demyelinating_disease_cns
All Pediatric
http://www.neurology.org/cgi/collection/all_pediatric
MRI
http://www.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus