Epilepsy of infancy with migrating focal seizures is a rare, infantile epileptic encephalopathy characterized by normal early development, refractory focal seizures arising independently from both hemispheres, and severe psychomotor retardation. In the revised terminology by the International League Against Epilepsy, it has been classified as an “electro-clinical syndrome” of “unknown cause” with onset in infancy. Affected infants have progressive psychomotor retardation and decline of head circumference percentile. We present a 6-month-old boy diagnosed with this entity and discuss the approach to an infant with unexplained refractory seizures.

CLINICAL CASE, PART I

A 6-month-old boy presented with developmental delay and focal seizures. He was the second child born to a third-degree consanguineous couple. His perinatal period had been uneventful and he had attained social smile by the age of 6 weeks. He started having seizures at the age of 2 months. The seizures consisted of deviation of eyes and head along with tonic posturing of arm or leg of either side and associated flushing. The seizures usually lasted for 1–2 minutes. The initial frequency was 2–3 per day but gradually over the next 4 months, it increased to 50–60 per day. He had been treated with phenobarbitone, phenytoin, carbamazepine, topiramate, and levetiracetam without success. He had lost social smile, and not gained any new developmental milestones. Family history was not significant.

Examination revealed a well-thriving baby with head circumference of 40 cm (< −2 SD). There were no neurocutaneous markers or dysmorphic features. The neurologic examination revealed reduced interaction and alertness, normal cranial nerves including fundus, and normal tone with brisk tendon reflexes and extensor plantar responses. Systemic examination was unremarkable.

Differential diagnosis. Important causes for refractory seizures in infancy include malformations of cortical development, acquired structural brain lesions such as sequelae of intracranial or perinatal brain injury, pyridoxine dependence, glucose transporter type 1 deficiency syndrome, neurocutaneous syndromes, some metabolic/degenerative disorders, and epileptic syndromes (table). Hence the evaluation begins with a comprehensive history and examination to look for features of perinatal insult, dysmorphism (suggesting a chromosomal abnormality), and neurocutaneous markers. A brain MRI must be obtained to look for structural causes (e.g., malformations, sequelae of previous insults, features of tuberous sclerosis). Metabolic screening tests such as blood ammonia, arterial lactate, blood acylcarnitine profile, and urine organic acid studies are then performed to exclude organic acidemias, aminoacidopathies, and urea cycle defects. If all these investigations are normal, therapeutic trials of pyridoxine, pyridoxal phosphate, and folinic acid must be given sequentially. Another treatable metabolic cause of refractory infantile epilepsy is glucose transporter defect, which is diagnosed by the presence of CSF hypoglycorrhachia (CSF/blood sugar ratio < 0.4). An EEG should be performed to look for localization of seizure focus, and for diagnosis of infantile epileptic encephalopathies such as Ohtahara syndrome and epilepsy of infancy with migrating focal seizures. Other rare causes of refractory infantile seizures include Alpers disease, some chromosomal abnormalities (e.g., ring chromosome 20), and SCN1A mutation–related epilepsy.

CLINICAL CASE, PART II

MRI of the brain, arterial blood gas, blood lactate and ammonia levels, urine ketones, plasma acylcarnitine profile, urine gas chromatography–mass spectrometry for organic acids, hair microscopy, serum copper and ceruloplasmin levels, thyroid profile, CSF examination (including glucose and lactate), and the karyotype were normal. The EEG revealed multifocal spikes and ictal rhythms arising variably from the right or left hemispheres (figure). The patient’s seizures were uncontrolled despite treatment with sodium valproate, clobazam, pyridoxine, biotin, and folinic...
Pyridoxine dependence
Seizures with onset in prenatal or neonatal period, refractory to conventional antiepileptic drugs
Response to therapeutic trial of pyridoxine; elevated -aminoadipate semialdehyde (AASA) and pipecolic acid in CSF; mutation in ALDH7A1 (Antiquitin protein)

Pyridoxal phosphate-dependent seizures
Prematurity, in utero and postnatal seizures, encephalopathy, burst suppression pattern on EEG
Therapeutic trial of oral pyridoxal phosphate (30 mg/kg/d); CSF: elevated glycine, threonine, L-dopa, 3-methoxytyrosine, and decreased homovanillic acid, 5-hydroxyindole acetic acid; PNPO mutation

Glucose transporter 1 (GLUT1) deficiency syndrome
Infantile onset epilepsy, developmental delay, and acquired microcephaly; treatment of choice: ketogenic diet
CSF hypoglycorrhachia (CSF/blood sugar ratio < 0.4); mutation in SLC2A1 gene (Glut1 protein)

Folinic acid responsive seizures
Neonatal-onset seizures, variable response to pyridoxine, and rapid response on addition of folinic acid and lysine-restricted diet
Response to therapeutic trial of oral folinic acid (3–5 mg/kg/d); elevated -aminoadipate semialdehyde and pipecolic acid in CSF

Disorders of biotin metabolism (biotinidase deficiency, holocarboxylase deficiency)
Symptoms within first weeks of life, seizures, breathing abnormalities, hypotonia, lethargy, vomiting, skin rash; occasionally alopecia, treatment with biotin (10 mg/d) is usually beneficial
Ketoacidosis, organic aciduria, hyperammonemia; BTD and HLCS gene mutations

Sulfite oxidase/molybdenum cofactor deficiency
Seizure onset in first week of life, feeding problems, hypomobility, pyramidal signs, lens dislocation, severe neuromotor impairment
Imaging: cystic cavities in white matter and cortical atrophy; elevated urine sulfate; SUOX, MOCS1, MOCS2, and GPHN mutations

Glycine encephalopathy
Onset in neonatal period, myoclonic seizures, lethargy/stupor, breathing difficulties, hiccups, rapidly fatal
Glycine levels elevated in urine, plasma, and CSF; GLDC, AMT, GCSH, and other mutations

Disorders of -aminobutyric acid (GABA) metabolism
Frequent seizures, diffuse, generally nonprogressive encephalopathy, hypotonia, extrapyramidal signs, ocular abnormalities
MRI may reveal signal changes in globus pallidi, white matter, dentate nucleus; 4-hydroxybutyric acid in urine, plasma, and CSF; free GABA and homocarnosine are usually high in CSF; ALDH5A1 gene mutation

Menkes disease
X-linked disorder; rapidly progressive neurodegeneration, seizures, hair changes, hypothermia, arterial degeneration, osteoporosis and other skeletal changes
Pili torti on hair microscopy; low serum copper and ceruloplasmin; ATP 7A gene mutation on Xq

Alpers syndrome
Familial rapidly progressive encephalopathy with onset in infancy, intractable seizures, liver disease, progressive cerebral atrophy
Genetic testing for POLG1 mutation (DNA polymerase)

Early infantile epileptic encephalopathy (Ohtahara syndrome)
Frequent, refractory tonic spasms with onset in first few months of life; frequent association with brain malformations; high mortality and very poor neurodevelopmental outcome in survivors
Suppression-burst pattern on EEG; MRI may demonstrate brain malformations

Early myoclonic encephalopathy
Early-onset, frequent myoclonias and partial seizures; association with genetic and metabolic causes; poor prognosis for psychomotor development
Suppression-burst pattern on EEG

Epilepsy of infancy with migrating focal seizures
See discussion

nostic criteria include the presence of 1) normal development before seizure onset, 2) onset before 6 months, 3) migrating focal motor seizures at onset, 4) multifocal seizures becoming intractable, 5) intractable to conventional antiepileptic drugs, 6) no identified etiology, and 7) profound psychomotor delay. It is a rare syndrome and has been reported in approximately 50 patients.

Clinical features. Three distinct phases are described in the natural history of this syndrome. Seizures appear after an uneventful perinatal period and normal early development. The first phase is heralded by seizures beginning in the first few months. The seizures are mainly focal motor with frequent secondary generalization. Autonomic manifestations such as apnea, cyanosis, or flushing are common. This phase usually lasts a few weeks or months. The second phase (also called the stormy phase) starts variably between 1 and 12 months of age. It is characterized by very frequent polymorphous focal seizures. They occur in multiple clusters in a day or nearly continuously. Long-term video EEG recordings frequently reveal subclinical ictal manifestations during this phase. The third phase begins between 1 and 5 years of age. It is a relatively seizure-free period with severe psychomotor retardation. This phase may be frequently complicated by seizure recurrences during intercurrent illnesses and further developmental regression.

Etiology. The exact etiology of this syndrome is not known. A role of channelopathies or metabolic disorders is suspected and is the focus of ongoing research. Neuroimaging has been normal in all reported patients. No familial occurrence or consanguinity has been reported. No metabolic abnormalities have been identified. In those cases that were examined postmortem, no cortical dysplasia or neuronal migration defects have been found.

Sodium channel (SCN1A) mutations have been identified in patients with infantile-onset cryptogenic focal epilepsy with variable intellectual disabilities. However, no mutations of potassium (KCNQ2, KCNQ3), sodium (SCN1A, SCN2A), or chloride (CLCN2) ion channels were identified in a study of 3 patients with epilepsy of infancy with migrating focal seizures. Recently, a submicroscopic duplication 16p11.2 was found in an infant with this phenotype, raising the possibility that such chromosomal rearrangements may play an etiologic role.

EEG. The EEG patterns in migrating partial seizures in infancy evolve over time. The interictal EEG initially shows diffuse slowing of background activity and frequent slow waves, which often shift from one hemisphere to the other. Multifocal discharges originating from both hemispheres are also frequently noted. The ictal EEGs display paroxysmal discharges occurring in various regions in consecutive seizures in a given patient. The area of ictal onset shifts from one region to another and from one hemisphere to the other, with occasional overlapping of consecutive seizures. The migratory feature of ictal discharges is not pathognomonic of the disorder and may be seen in benign partial epilepsy of infancy.

Treatment. Therapies including conventional antiepileptic drugs, pyridoxine, biotin, folinic acid, ketogenic diet, steroids, and adrenocorticotropic hormone have proved ineffective. Vigabatrin and carbamazepine may worsen the seizures. Some improvement has been reported with the use of bromides and stiripentol.
Prognosis. The long-term outcome is dismal in most cases. Most children have severe psychomotor retardation and acquired microcephaly along with continuing seizures. A few children whose seizures are controlled may acquire the ability to reach for objects and walk, but do not develop language. A number of patients die before the end of the first year of age or later, mainly because of intercurrent infections and respiratory failure.5

AUTHOR CONTRIBUTIONS
All authors contributed to the content of the manuscript. S.S., N.S., and R.K. performed the clinical and diagnostic evaluation of the child, reviewed the literature, and prepared the manuscript. S.G. was in charge of the case and approved the final version of the manuscript.

REFERENCES
Child Neurology: Epilepsy of infancy with migrating focal seizures
Suvasini Sharma, Naveen Sankhyan, Konanki Ramesh, et al.
Neurology 2011;77:e21-e24
DOI 10.1212/WNL.0b013e3182267b4f

This information is current as of July 25, 2011

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/77/4/e21.full.html

References
This article cites 11 articles, 0 of which you can access for free at:
http://www.neurology.org/content/77/4/e21.full.html##ref-list-1

Citations
This article has been cited by 1 HighWire-hosted articles:
http://www.neurology.org/content/77/4/e21.full.html##otherarticles

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Epilepsy/Seizures
http://www.neurology.org/cgi/collection/all_epilepsy_seizures
All Pediatric
http://www.neurology.org/cgi/collection/all_pediatric
EEG
http://www.neurology.org/cgi/collection/eeg_
Partial seizures
http://www.neurology.org/cgi/collection/partial_seizures

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus