EARLY EEG CORRELATES OF NEURONAL INJURY AFTER BRAIN ANOXIA

Carlene Stanko, WD Freeman, Jacksonville, FL: Rossetti et al. reported on early EEG correlates of neuronal injury after brain anoxia. They studied 61 cardiac arrest patients treated with therapeutic hypothermia (TH) with continuous (24–48 hours) or 20–30 minutes EEG. We reviewed our hypothermia database from 2006 to 2012 and found 91 patients who received TH for cardiac arrest. Nine patients received EEG similar to the methods Rossetti et al. described, 8 of which (89%) occurred within the last 3 years. Three patients had suppression burst (SB) activity on EEG and all died (cerebral performance category [CPC] = 5). The remaining 6 patients did not have SB pattern on EEG, 2 had CPC 1–2 (good) outcome and at least 7 Hz background on EEG. Of these, 4 patients had a CPC outcome of 5 and EEGs with δ, θ, or α background cerebral activity except 1 patient with generalized periodic epileptiform discharges (GPEDs). Therefore, SB pattern and GPEDs on EEG had 100% specificity for poor prognosis whereas other EEG rhythms had poor specificity and sensitivity for eventual outcome. The data of Rossetti et al. support the need for multimodal prognostic research trials for TH-treated cardiac arrest patients similar to other forms of brain injury.2

© 2012 American Academy of Neurology

ANTI-JC VIRUS ANTIBODIES IN A LARGE GERMAN NATALIZUMAB-TREATED MS COHORT

Hamid Zahednasab, Tehran, Iran: Trampe et al. should be commended for their investigation into the rate of seropositivity of the anti-JC virus (JCV) antibodies in a German multiple sclerosis (MS) cohort treated with natalizumab. Further points need to be considered.

Trampe et al. investigated the rate of anti-JCV antibodies by using a confirmatory 2-step ELISA on 2,782 blood samples. Although the serum sample is a good option for the detection of anti-JCV antibodies by ELISA method, it would be more accurate if they measured JVC-DNA in the urine samples of patients with MS. It has been shown that the subjects who developed progressive multifocal leukoencephalopathy (PML) in the longitudinal cohort had detectable JCV-DNA in urine at all time points whereas serum or blood from patients with PML were always negative before the onset of disease. This same report also showed that 4 subjects with JCV-DNA in urine and undetectable anti-JCV antibodies were retested for anti-JCV antibodies and 3 out of 4 resulted positive. Thus, it would be more plausible that testing JCV-DNA in urine is complementary to testing anti-JCV antibodies to monitor patients at risk of PML.

Patients taking IFN-β should be excluded from this study. It has been shown that the administration of IFN-β can lead to the reduction of JCV genome and may result in a false-negative due to decreasing the JCV titer.

Author Response: Anne-Kathrin Trampe, Anke Stroet, Ralf Gold, Andrew Chan, Bochum, Germany: Dr. Zahednasab indicates that several studies have investigated JCV-DNA in urine as a potential...
tool for PML risk stratification.2,4,5 In one of the largest studies,5 urinary JCV-DNA could not be detected in 1 of 3 patients who subsequently developed PML; urinary JCV excretion was detected frequently and did not increase during natalizumab treatment. Thus, predictive values of either positive or negative tests appear to be low.5 Using urinary JCV-DNA analysis, a false-negative rate of the 2-step anti-JCV-antibody ELISA of approximately 2.7\% can be calculated.4 Due to lack of biomaterial we were not able to determine the rate of false-negative findings of anti-JCV serology in our cohort. Given the current label of natalizumab in Germany, the majority of patients have undergone immunomodulatory pretreatment (e.g., with IFN-\textbeta{}).6 Since we aimed to investigate the potential utility of anti-JCV serology in clinical practice, we did not exclude these patients from analysis.1 Furthermore, our data do not indicate an immunomodulatory pretreatment effect on anti-JCV serostatus or titer (median normalized optical density [25\%–75\% percentile]: untreated 0.542 [0.207–1.080], n = 59; immunmodulators: 0.579 [0.290–0.974], n = 786, p = NS).1 We agree that further investigation is needed to fully elucidate the predictive value of anti-JCV-antibody testing in PML risk stratification.

\textcopyright{} 2012 American Academy of Neurology

\textbf{CORRECTION}

\textit{Nutrient intake and plasma β-amyloid}

In the article “Nutrient intake and plasma β-amyloid” by Y. Gu et al. (\textit{Neurology}\textregistered 2012;78:1832–1840), there is an error in table 2. The first value in the far left column should read “Aβ42, pg/mL, mean (SD).” The publisher regrets the error.
Anti-JC Virus Antibodies in a Large German Natalizumab-Treated MS Cohort
Hamid Zahednasab, Anne-Kathrin Trampe, Anke Stroet, et al.
Neurology 2012;79;2010-2011
DOI 10.1212/01.wnl.0000422852.74276.76

This information is current as of November 5, 2012

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://www.neurology.org/content/79/19/2010.2.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 6 articles, 1 of which you can access for free at: http://www.neurology.org/content/79/19/2010.2.full.html#ref-list-1</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at: http://www.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://www.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>