Can MRI screen for CSF biomarkers in neurodegenerative disease?
The authors recruited 185 patients with a clinically diagnosed neurodegenerative disease who had a lumbar puncture and a volumetric MRI; 32 patients had genetic or autopsy-confirmed Alzheimer disease (AD) or frontotemporal lobar degeneration (FTLD). MRI may serve as a noninvasive procedure that can screen for AD and FTLD pathology as a surrogate for CSF biomarkers.
See p. 132

From editorialists Habeck & Whitwell: “The study also provides an instructive example that could be embraced and copied for other types of diagnostically relevant but hard-to-get physiologic information.”
See p. 126

Multiple sclerosis shrinks intralesional, and enlarges extraliminal, brain parenchymal veins
This study demonstrated in vivo that small intracerebral veins were narrowed within lesions and dilated outside of lesions in 19 multiple sclerosis cases, compared to nine controls and eight patients with other neurologic diseases. Intralesional vein narrowing may correspond to pathologically observed perivascular inflammation and fibrosis, detectable with high-resolution MRI.
See p. 145

Prehospital thrombolysis in acute stroke: Results of the PHANTOM-S pilot study
This study described the experience with a special ambulance for acute stroke management. Prehospital stroke care was feasible and resulted in a considerable reduction of alarm-to-treatment time. Given the high number of prehospital stroke thrombolyses, the new concept might advance modern stroke care.
See p. 163; Editorial, p. 130

Screening for impulse control symptoms in patients with de novo Parkinson disease: A case-control study
Screening data from 168 patients with de novo, untreated Parkinson disease and 143 controls indicated that impulse control disorder symptoms were equally common in the two groups. This additional evidence suggests that impulse control disorders in Parkinson disease are caused by exposure to dopaminergic medications, not the disease itself.
See p. 176

Complete stable remission and autoantibody specificity in myasthenia gravis
Five hundred seventeen acetylcholine receptor–positive, 55 muscle-specific kinase (MuSK)-positive, and 105 double negative patients with myasthenia gravis were included in the study. Kaplan-Meier and Cox proportional hazard regression analyses evaluated baseline characteristics, antibody specificity, and complete stable remission. MuSK antibodies identified a distinguishable, more severe form of myasthenia gravis, with a lower occurrence of complete stable remission.
See p. 188

Randomized trial of minocycline in the treatment of HIV-associated cognitive impairment
This study enrolled HIV- positive participants with CD4 counts of 250–500 cells/µL, who received 100 mg of minocycline or matching placebo orally every 12 hours for 24 weeks. Minocycline, though well tolerated, did not improve cognitive impairment; therefore, other forms of therapy need to be investigated.
See p. 196

CONTEMPORARY ISSUES: INNOVATIONS IN EDUCATION
Association between performance on Neurology In-Training and Certification Examinations
Pearson correlation coefficients were examined for the relationship between performance on the Residency In-Service Training Examination (RITE) and the Certification Examination for two cohorts of adult and child neurologists. The RITE is a self-assessment examination, and performance on the test was a positive predictor of future performance on the Certification Examination.
See p. 206

NB: Teaching Video NeuroImages: “Beevor sign: When the umbilicus is pointing to neurologic disease.” To check out other Teaching NeuroImages, point your browser to www.neurology.org.

Podcasts can be accessed at www.neurology.org

© 2013 American Academy of Neurology
Spotlight on the January 8 issue
Robert A. Gross

Neurology 2013;80;125
DOI 10.1212/WNL.0b013e31827ccf5a

This information is current as of January 7, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/80/2/125.full.html

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus