A 50-year-old woman developed multiorgan system failure secondary to sepsis. She became obtunded during a period of hypotension, and cranial CT demonstrated diffuse borderzone infarction. Brain autopsy revealed green pigmentation in areas of infarction due to vascular leakage of bilirubin at sites of blood–brain barrier disruption, mapping the borderzone regions and bilateral posterior anterior cerebral artery (ACA) territories with this endogenous label (total bilirubin at time of death was 24 mg/dL; direct bilirubin was 19 mg/dL; ACA infarction was not present on the initial CT, and was thought to be secondary to herniation) (figure). This brain–liver association evokes the first description of pathology in the borderzone regions in 1883 by Samuel-Jean Pozzi,1 who attributed the lesions to cortical “cirrhosis.”

Aaron L. Berkowitz, MD, PhD, Shu-Hsien Sheu, MD, PhD, Matthew F. Rose, MD, PhD, Ivana Delalle, MD, PhD, Rebecca D. Folkerth, MD

From Brigham and Women’s Hospital, Boston, MA.
Author contributions: Dr. Berkowitz drafted the initial manuscript and revised the manuscript. Dr. Sheu revised the manuscript and was involved in the preparation of the pathologic specimens. Dr. Rose revised the manuscript, prepared the figure, and was involved in the preparation of the pathologic specimens. Dr. Delalle revised the manuscript and was involved in the preparation of the pathologic specimens. Dr. Folkerth revised the manuscript and was involved in the preparation of the pathologic specimens.

Study funding: No targeted funding reported.


Correspondence to Dr. Berkowitz: Aberkowitz3@partners.org


NeuroImages Are Free at www.neurology.org!

All Neurology® NeuroImages can now be freely accessed on the Neurology Web site. See them at www.neurology.org, where you can also sign up for journal email alerts and check out other online features, including the Resident & Fellow section, Neurology: Clinical Practice, and the weekly Neurology Podcasts.
Bilirubin labeling of borderzone and anterior cerebral artery territory infarction
Aaron L. Berkowitz, Shu-Hsien Sheu, Matthew F. Rose, et al.
Neurology 2013;81;1272-1273
DOI 10.1212/WNL.0b013e3182a6cbb2

This information is current as of September 30, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/81/14/1272.full.html

References
This article cites 1 articles, 0 of which you can access for free at:
http://www.neurology.org/content/81/14/1272.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Cerebrovascular disease/Stroke
http://www.neurology.org/cgi/collection/all_cerebrovascular_disease_stroke
Gastrointestinal
http://www.neurology.org/cgi/collection/gastrointestinal

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus