Teaching NeuroImages: Thalamic aphasia syndrome

An 83-year-old right-handed woman presented with sudden right-sided hemiparesis, somnolence, and loss of normal speech. Speech was nonfluent with semantic paraphasias and word-finding difficulties. Word repetition and comprehension were normal. MRI brain showed an area of restricted diffusion in the left thalamus consistent with acute infarction (figure 1). Speech fluency returned to normal after 2 days with occasional dysnomia and paraphasias.

Left thalamic infarcts can result in aphasia that is characterized by lexical-semantic deficits and intact word repetition; fluency and comprehension are variably affected.\(^1\) Thalamic aphasia has been hypothesized to result from disconnection between cortical language centers and thalamic nuclei (figure 2).\(^1,2\)

AUTHOR CONTRIBUTIONS
Dr. Umair Afzal: acquisition of data, analysis and interpretation, drafting the manuscript. Dr. Muhammad U. Farooq: critical revision of the manuscript for important intellectual content and study supervision.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

Figure 1 MRI of the brain shows acute ischemic stroke involving the left thalamus

Axial diffusion-weighted images at different levels show restricted diffusion in the left thalamus. Affected thalamic nuclei include dorsomedial nucleus (A), anterior nuclear group (B), ventral nuclear group, and reticular nuclei (C).

Figure 2 Major thalamic nuclei mapped onto axial section of MRI

Reticular nucleus (red), ventral nuclear group (yellow), anterior nuclear group (brown), intralaminar nuclei (orange), dorsomedial (green), and pulvinar (blue).
Teaching NeuroImages: Thalamic aphasia syndrome
Umair Afzal and Muhammad U. Farooq
Neurology 2013;81;e177
DOI 10.1212/01.wnl.0000436950.75473.af

This information is current as of December 2, 2013

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/81/23/e177.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2013/11/29/81.23.e177.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/81/23/e177.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Aphasia
http://www.neurology.org/cgi/collection/aphasia
Infarction
http://www.neurology.org/cgi/collection/infarction
MRI
http://www.neurology.org/cgi/collection/mri

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus