An 83-year-old right-handed woman presented with sudden right-sided hemiparesis, somnolence, and loss of normal speech. Speech was nonfluent with semantic paraphasias and word-finding difficulties. Word repetition and comprehension were normal. MRI brain showed an area of restricted diffusion in the left thalamus consistent with acute infarction (figure 1). Speech fluency returned to normal after 2 days with occasional dysnomia and paraphasias.

Left thalamic infarcts can result in aphasia that is characterized by lexical-semantic deficits and intact word repetition; fluency and comprehension are variably affected. Thalamic aphasia has been hypothesized to result from disconnection between cortical language centers and thalamic nuclei (figure 2).

AUTHOR CONTRIBUTIONS
Dr. Umair Afzal: acquisition of data, analysis and interpretation, drafting the manuscript. Dr. Muhammad U. Farooq: critical revision of the manuscript for important intellectual content and study supervision.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

From the College of Human Medicine (U.A.), Michigan State University, Grand Rapids; and the Division of Stroke and Vascular Neurology (M.U.F.), Hauenstein Neuroscience Center, Saint Mary’s Health Care, Grand Rapids, MI.
Teaching NeuroImages: Thalamic aphasia syndrome
Umair Afzal and Muhammad U. Farooq
Neurology 2013;81:e177
DOI 10.1212/01.wnl.0000436950.75473.af

This information is current as of December 2, 2013

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://www.neurology.org/content/81/23/e177.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supplementary Material</td>
<td>Supplementary material can be found at: http://www.neurology.org/content/suppl/2013/11/29/81.23.e177.DC1</td>
</tr>
<tr>
<td>References</td>
<td>This article cites 2 articles, 0 of which you can access for free at: http://www.neurology.org/content/81/23/e177.full.html##ref-list-1</td>
</tr>
</tbody>
</table>
| Subspecialty Collections | This article, along with others on similar topics, appears in the following collection(s):
- Aphasia http://www.neurology.org/cgi/collection/aphasia
- Infarction http://www.neurology.org/cgi/collection/infarction
- MRI http://www.neurology.org/cgi/collection/mri |
| Permissions & Licensing | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/misc/about.xhtml#permissions |
| Reprints | Information about ordering reprints can be found online: http://www.neurology.org/misc/addir.xhtml#reprintsus |