Teaching NeuroImages: Resolution of MRI abnormalities in megalencephalic leukoencephalopathy with subcortical cysts

A boy was diagnosed at age 10 months with megalencephalic leukoencephalopathy with subcortical cysts (MLC) based on progressive macrocephaly and characteristic MRI findings (figure, A–C).1 Over subsequent years, initial motor delays resolved and neurobehavioral difficulties were mild. On repeat MRI at 6 years (figure, D–F), only small areas of frontal and temporal white matter signal alteration remained, consistent with remitting MLC (MLC2b). MLC2b is associated with heterozygous mutations in HEPACAM with autosomal dominant inheritance. Often, one parent has macrocephaly.1 Unlike the more common phenotype seen with MLC1 mutations, MLC2b patients demonstrate remarkable MRI improvement and have a better clinical prognosis.2

AUTHOR CONTRIBUTIONS
Dr. Otallah is the corresponding author. He wrote the draft and completed final editing. Dr. Matsumoto contributed to neuroradiologic aspects of this article including formatting of the figure and other professional comments. Dr. Goodkin assisted in drafting and preparing the manuscript for publication.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
S. Otallah and J. Matsumoto report no disclosures relevant to the manuscript. H. Goodkin serves on the editorial boards of Neurology® and Epilepsia and receives funding from the NIH. Go to Neurology.org for full disclosures.

REFERENCES

Download teaching slides: Neurology.org

From the Department of Neurology (S.O.), University of Virginia Health System, Charlottesville; and the Departments of Radiology and Medical Imaging (J.A.M.) and Neurology and Pediatrics (H.P.G.), University of Virginia, Charlottesville.
Teaching NeuroImages: Resolution of MRI abnormalities in megalencephalic leukoencephalopathy with subcortical cysts
Scott Otallah, Julie A. Matsumoto and Howard P. Goodkin

Neurology 2014;82:e167
DOI 10.1212/WNL.00000000000000409

This information is current as of May 12, 2014

Updated Information & Services

including high resolution figures, can be found at:

http://www.neurology.org/content/82/19/e167.full.html

Supplementary Material

Supplementary material can be found at:

http://www.neurology.org/content/suppl/2014/05/11/82.19.e167.DC1

References

This article cites 2 articles, 0 of which you can access for free at:

http://www.neurology.org/content/82/19/e167.full.html##ref-list-1

Subspecialty Collections

This article, along with others on similar topics, appears in the following collection(s):

All Genetics
http://www.neurology.org/cgi/collection/all_genetics

All Pediatric
http://www.neurology.org/cgi/collection/all_pediatric

MRI
http://www.neurology.org/cgi/collection/mri

Permissions & Licensing

Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:

http://www.neurology.org/misc/about.xhtml#permissions

Reprints

Information about ordering reprints can be found online:

http://www.neurology.org/misc/addir.xhtml#reprintsus