trigeminal neuralgia was first suggested by Dandy in 1934. Loop compression of the 5th cranial nerve resulting in neurologic symptoms have not been shown. Vascular vessels and the correlation between compression and management before resorting to surgery. To rule out other causes and provide conservative management is frequently seen on imaging in asymptomatic subarachnoid space, features consistent with idiopathic intracranial hypertension (IIH). IIH also results in vision diminution and even though the cause-and-effect relationship of vascular loop compression is unclear, it is important to rule out other causes and provide conservative management before resorting to surgery.

Compression over cranial nerves by redundant vessels and the correlation between compression and neurologic symptoms have not been shown. Vascular loop compression of the 5th cranial nerve resulting in trigeminal neuralgia was first suggested by Dandy in 1934. The same concept was expanded to explain various cranial nerve disorders including hemifacial spasms, glossopharyngeal neuralgia, and gniculate neuralgia. Janetta was the first to perform microvascular decompression and proposed that the redundant arterial loops compress the 8th cranial nerve at the cerebellopontine angle leading to symptoms of vertigo, tinnitus, and auditory loss.

The pathophysiology of vascular compression syndromes is controversial. A redundant vascular loop abutting, indenting, or even compressing any nerve is frequently seen on imaging in asymptomatic subjects, and demonstration of vascular compression should not be the sole diagnostic criterion when considering surgical decompression.

Author Response: M. Neil Woodall, Cargill H. Alleyne, Jr., Augusta, GA: We appreciate Dr. Ghuman’s comments regarding our article. Dr. Ghuman correctly argued that vascular compression of the optic nerve is not the sole diagnostic consideration in the workup of monocular visual loss. Based on MRI findings, he argued that our patient should have been diagnosed with, and treated for, IIH rather than taken to surgery. Our patient presented with painless, progressive, monocular visual loss. He specifically denied any history of headaches and had no other signs or symptoms of increased intracranial pressure. On formal funduscopic examination, no papilledema was appreciated to support a diagnosis of IIH. The diagnosis of IIH is clinical. While neuroimaging features such as posterior globe flattening, optic nerve sheath distension, nerve tortuosity, and an empty sella are associated with IIH, only posterior globe flattening reliably predicts a diagnosis of IIH. Our diagnosis is further supported by the patient’s improvement in vision following microvascular decompression. While vascular compression of the optic nerve is not the only diagnostic consideration in cases of visual loss, it is vital when another explanation is not apparent, not only for our patient but for other reported patients.

© 2014 American Academy of Neurology

Teaching NeuroImages: Microvascular decompression of the optic nerve
Mandeep S. Ghuman, M. Neil Woodall and Cargill H. Alleyne, Jr
Neurology 2014;82;1847
DOI 10.1212/01.wnl.0000450225.45489.9b

This information is current as of May 19, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/82/20/1847.full.html

References
This article cites 10 articles, 3 of which you can access for free at:
http://www.neurology.org/content/82/20/1847.full.html#ref-list-1

Permissions & Licensing
Information about reproducing this article in parts (figures,tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus