MRI-visible Virchow-Robin perivascular spaces in cerebral small-vessel disease

Konstantinos Voumvourakis, MD
Georgios Tsivgoulis, MD
Matilda A. Papathanasiou, MD
Athena Simitsi, MD
Leonidas Stefanis, MD
Sokratis G. Papageorgiou, MD

Correspondence to
Dr. Voumvourakis:
tsvgoulasgiorg@yahoo.gr

(A) Axial susceptibility-weighted imaging (SWI) shows multiple cortical (green arrow) and subcortical microbleeds in a 69-year-old woman with cerebral amyloid angiopathy (CAA) and hypertensive arteriopathy (case 2). (C) SWI discloses recurrent infratentorial and supratentorial microbleeds in a 71-year-old woman with CAA (case 1). Axial T2 sequence depicts severe perivascular spaces enlargement in basal ganglia (yellow arrow, B) and centrum semiovale (red arrow, D).

MRI-visible perivascular spaces (PVS) in centrum semiovale white matter (CS) have been proposed as a novel neuroimaging marker for cerebral amyloid angiopathy (CAA). Progressive β-amyloid deposition in small cortical and leptomeningeal arteries in CAA may gradually impair perivascular drainage and cause retrograde PVS dilation.

We describe the neuroimaging findings of 2 patients who were diagnosed with small-vessel pathologies: probable CAA (case 1, figure, C and D) and probable CAA and hypertensive arteriopathy (case 2, figure, A and B). Susceptibility-weighted brain MRI showed extensive cortical and infratentorial microbleeds (figure, A and C, I/II, respectively) and severe PVS enlargement in basal ganglia (figure, B) and CS (figure, D). MRI-visible PVS may identify patients at risk of developing CAA.

AUTHOR CONTRIBUTIONS
Dr. Voumvourakis: drafting and revising the manuscript. Dr. Tsivgoulis: data collection, drafting the manuscript. Dr. Papathanasiou: data collection, critical comments during manuscript revision. Dr. Simitsi: data collection, critical comments during manuscript revision. Dr. Stefanis: critical comments during manuscript revision. Dr. Papageorgiou: data collection (neurobehavioral evaluation), critical comments during manuscript revision.

From the Second Department of Neurology (K.V., G.T., A.S., L.S., S.G.P.) and the Second Department of Radiology (M.A.P.), University of Athens, School of Medicine, “Ariki” University Hospital, Greece; and the International Clinical Research Center (G.T.), St. Anne’s University Hospital in Brno, Czech Republic.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

© 2014 American Academy of Neurology

Teaching NeuroImages: MRI-visible Virchow-Robin perivascular spaces in cerebral small-vessel disease
STUDY FUNDING
Dr. Tsivgoulis was supported by European Regional Development Fund–Project FNUSA–ICRC (No. CZ.1.05/1.1.00/02.0123).

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: MRI-visible Virchow-Robin perivascular spaces in cerebral small-vessel disease
Konstantinos Voumvourakis, Georgios Tsivgoulis, Matilda A. Papathanasiou, et al.
Neurology 2014;83:e119-e120
DOI 10.1212/WNL.0000000000000805

This information is current as of September 15, 2014