Global investigation and meta-analysis of the $C9orf72\,(G_4C_2)_n$ repeat in Parkinson disease

ABSTRACT

Objectives: The objective of this study is to clarify the role of $(G_4C_2)_n$ expansions in the etiology of Parkinson disease (PD) in the worldwide multicenter Genetic Epidemiology of Parkinson’s Disease (GEO-PD) cohort.

Methods: $C9orf72\,(G_4C_2)_n$ repeats were assessed in a GEO-PD cohort of 7,494 patients diagnosed with PD and 5,886 neurologically healthy control individuals ascertained in Europe, Asia, North America, and Australia.

Results: A pathogenic $(G_4C_2)_n$ expansion was detected in only 4 patients with PD (4/7,232; 0.055%), all with a positive family history of neurodegenerative dementia, amyotrophic lateral sclerosis, or atypical parkinsonism, while no carriers were detected with typical sporadic or familial PD. Meta-analysis revealed a small increase in risk of PD with an increasing number of $(G_4C_2)_n$ repeats; however, we could not detect a robust association between the $C9orf72\,(G_4C_2)_n$ repeat and PD, and the population attributable risk was low.

Conclusions: Together, these findings indicate that expansions in C9orf72 do not have a major role in the pathogenesis of PD. Testing for $C9orf72$ repeat expansions should only be considered in patients with PD who have overt symptoms of frontotemporal lobar degeneration/amyotrophic lateral sclerosis or apparent family history of neurodegenerative dementia or motor neuron disease. *Neurology*® 2014;83:1906-1913

GLOSSARY

ALS = amyotrophic lateral sclerosis; FTLD = frontotemporal lobar degeneration; GEO-PD = Genetic Epidemiology of Parkinson's Disease; PD = Parkinson disease; RP = repeat-primed; STR = short tandem repeat.

A substantial number of patients with frontotemporal lobar degeneration (FTLD)/amyotrophic lateral sclerosis (ALS) (14%–35%) carrying $C9orf72\,(G_4C_2)_{>60}$ expansions present with atypical parkinsonism in early disease stages and increased incidence of parkinsonism with or without features of the FTLD/ALS complex in their relatives. Ten research groups have reported on $C9orf72$ repeat expansions in Parkinson disease (PD) or atypical parkinsonism patients, but none of these investigated the $C9orf72$ repeat in large-scale cohorts, and European and Australian populations were underrepresented in the published data. Apart from the pathogenicity of $(G_4C_2)_{>60}$ expansions, we provided in vitro evidence that the (G_4C_2) repeat size negatively correlated with the transcriptional activity of the $C9orf72$ promoter. Hence, it is conceivable that an increasing number of $C9orf72$ repeats may affect transcription gradually and increase susceptibility to disease. Three studies indicated a role of $C9orf72$ repeats in PD susceptibility but associations were found using different dichotomizations of repeat length, muddling biological interpretation. In one study, a marginal increased risk of PD was observed for carriers of $(G_4C_2)_{>10}$ repeats. In the second, a significant increased frequency of $(G_4C_2)_{>20}$ repeats was observed in patients clinically diagnosed with PD. In the third study, the authors...
reported association of \((G_4C_2)^{\geq 7}\) repeats with PD in the Chinese Han population.\(^{16}\) All of these studies, however, were executed in ethnically distinct and medium scaled cohorts. We set out to clarify the role of the \(C9orf72\) \((G_4C_2)_n\) repeat in PD etiology in the first global multicenter study cohort of more than 7,000 patients with PD of 12 nationalities and 4 continents. First, we assess the global prevalence of pathogenic \((G_4C_2)^{\geq 60}\) expansions. Second, the size of the combined study populations enables a detailed investigation of the specific \(C9orf72\) repeat allele or size threshold associated with increased risk of PD.

METHODS Standard protocol approvals, registrations, and patient consents. Genetic studies applied in this research were approved by the ethics committees of the ZNA (Hospital Network Antwerp), the Antwerp University Hospital, and University of Antwerp. Clinical protocols were approved by the ethics committees of the ZNA, the Antwerp University Hospital, and local ethical review boards of the participating research centers. All human biological samples were collected, fulfilling ethical approvals, and used in accordance with the terms of subjects’ written informed consent.

Participants. The Genetic Epidemiology of Parkinson’s Disease (GEO-PD) Consortium includes investigators from 60 sites from 30 countries and 6 continents (http://www.GEO-PD.org/about/). All sites were invited to participate in this study. A total of 18 sites representing 12 countries and 4 continents contributed either DNA or genotypic data, and clinical data of in total 15,123 individuals (tables 1 and 2). After thorough quality control as described in the procedures section below, 13,669 samples were included in this study. We excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Demographics and diagnostic criteria of each series included in this study and the sample size breakdown from each site are provided in table 2. Controls were collected at the local sites as demographically matched neurologically healthy individuals.

Procedures. Sample quality control. Concentration and purity were checked spectrophotometrically using the Trinean DropSense96 UVVIS droplet reader (Trinean, Genbrugge, Belgium) for all consortium genomic DNA samples. Sex and DNA fingerprint were determined for all samples using an in-house-developed multiplex PCR panel composed of 13 short tandem repeat (STR) markers distributed over multiple autosomal locations: D20S480, D22S1174, D5S1217, D5S1287, D5S1744, D5S1764, D7S805, D7S2426, D8S1174, D14S1025, D20S866, D15S1237, D20S1912, and D6S5965. This panel also includes a marker specific for the X chromosome (DXS1187) and one for the \(SBY\) gene on the Y chromosome, and enables fast and accurate sample identification and sex determination in a single assay. After selective amplification of 20 ng genomic DNA, amplification products were size separated on an ABI 3730 automatic sequencer (Applied Biosystems, Foster City, CA) using GeneScan-600 LIZ (Applied Biosystems) as internal size standard and genotypes were assigned using in-house-developed TracI genotyping software (http://www.vibgeneticservicefacility.be).

Genetic analyses. To screen the GEO-PD cohorts for the pathogenic \((G_4C_2)^{>60}\) \(C9orf72\) repeat expansion, we designed a 2-step procedure: an STR fragment length assay with flanking PCR primers optimized for alleles with high GC content (STR-PCR) followed by 2 repeat-primed PCR assays (forward and reverse RP-PCR) as described earlier.\(^{2,17}\) Four participating research groups performed the genotyping in their local facilities according to previously published procedures.\(^{2,17}\) For consistent allele scoring of repeat lengths between GEO-PD groups and accurate interpretation of the repeat length, we designed a reference DNA set of 14 samples covering a range of normal repeat sizes that was generated by each of these facilities. Furthermore, for 2 of the cohorts, a random set of samples homozygous for the STR-PCR assay were included in the RP-PCR analysis at the Antwerp site for independent validation of the absence of a pathogenic repeat expansion.

Statistical analyses. To investigate the association between repeat units and PD susceptibility, 3 explorative approaches were followed, based on (1) allele counts of the distinct repeat sizes, to determine whether one or more specific repeat sizes were associated with PD, (2) the total number of repeat units (sum of both alleles) per individual, and (3) the size of the longest repeat per individual (maximum allele). Summary statistics were computed in a random-effects meta-analysis (DerSimonian-Laird)\(^{2,17}\) for each approach in the Rmeta package implemented in the R environment version 2.15.3. Based on the results obtained in the above-mentioned analyses, we performed hypothesis-driven dichotomized genotypic meta-analyses. Details are provided in the e-Methods on the Neurology® Web site at Neurology.org.

To take into account the number of tests performed \((n = 22)\), a Bonferroni-corrected 2-sided \(p\) value of \(\leq 0.002\) was considered statistically significant. Population attributable risk of \((G_4C_2)^{>5}\), \((G_4C_2)^{>10}\) and \((G_4C_2)^{>17}\) was estimated using the epip package in R. For the meta-analyses, only the cohorts including both the patients with PD and the controls that were

Table 1 Synopsis of this global GEO-PD study

<table>
<thead>
<tr>
<th></th>
<th>Patients</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>((G_4C_2)^{\leq 60})</td>
<td>7,050</td>
<td>5,886</td>
</tr>
<tr>
<td>Europe</td>
<td>4,215</td>
<td>3,379</td>
</tr>
<tr>
<td>US + CA</td>
<td>1,118</td>
<td>1,313</td>
</tr>
<tr>
<td>Asia</td>
<td>1,190</td>
<td>660</td>
</tr>
<tr>
<td>Australia</td>
<td>527</td>
<td>534</td>
</tr>
</tbody>
</table>

Abbreviations: CA = Canada; GEO-PD = Genetic Epidemiology of Parkinson’s Disease.

For the meta-analyses, only the cohorts including both patients with Parkinson disease and geographically matched controls that were size-corrected using the reference panel were included.
Table 2 Characteristics of the GEO-PD cohorts included in the study

<table>
<thead>
<tr>
<th>Site PI</th>
<th>Country</th>
<th>Ethnicity</th>
<th>Controls</th>
<th>Patients</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>% Males</td>
<td>% Familial</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In QC OK</td>
<td>QC OK</td>
</tr>
<tr>
<td>C. Van Broeckhoven</td>
<td>Belgium</td>
<td>Caucasian</td>
<td>1,119</td>
<td>1,118</td>
</tr>
<tr>
<td>G. Garraux</td>
<td>Belgium</td>
<td>Caucasian</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C. Klein</td>
<td>Germany</td>
<td>Caucasian</td>
<td>706</td>
<td>697</td>
</tr>
<tr>
<td>A. Deutschländer</td>
<td>Germany</td>
<td>Caucasian</td>
<td>87</td>
<td>81</td>
</tr>
<tr>
<td>C. Ferrarese</td>
<td>Italy</td>
<td>Caucasian</td>
<td>92</td>
<td>89</td>
</tr>
<tr>
<td>E.M. Valente</td>
<td>Italy</td>
<td>Caucasian</td>
<td>92</td>
<td>83</td>
</tr>
<tr>
<td>G. Annesi</td>
<td>Italy</td>
<td>Caucasian</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>G.M. Hadjigeorgiou</td>
<td>Greece</td>
<td>Caucasian</td>
<td>300</td>
<td>232</td>
</tr>
<tr>
<td>A. Puschmann</td>
<td>Sweden</td>
<td>Caucasian</td>
<td>43</td>
<td>43</td>
</tr>
<tr>
<td>G.D. Mellick</td>
<td>Australia</td>
<td>Caucasian</td>
<td>920</td>
<td>571</td>
</tr>
<tr>
<td>M.S. LeDoux</td>
<td>US</td>
<td>Caucasian</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>S.J. Chung</td>
<td>Korea</td>
<td>Asian</td>
<td>650</td>
<td>568</td>
</tr>
<tr>
<td>E.-K. Tan</td>
<td>Singapore</td>
<td>Asian</td>
<td>200</td>
<td>100</td>
</tr>
<tr>
<td>N. Hattori</td>
<td>Japan</td>
<td>Asian</td>
<td>69</td>
<td>69</td>
</tr>
<tr>
<td>R. Krüger/M. Sharma</td>
<td>Germany</td>
<td>Caucasian</td>
<td>647</td>
<td>625</td>
</tr>
<tr>
<td>S. Lesage</td>
<td>France</td>
<td>Caucasian</td>
<td>442</td>
<td>442</td>
</tr>
<tr>
<td>Z.K. Wszolek</td>
<td>US</td>
<td>Caucasian</td>
<td>712</td>
<td>712</td>
</tr>
<tr>
<td>E. Rogaeva</td>
<td>Canada</td>
<td>Mixed</td>
<td>601</td>
<td>601</td>
</tr>
</tbody>
</table>

Abbreviations: AAO = age at onset; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; NA = not available; PD = Parkinson disease; PI = principal investigator; QC = quality control; STR = short tandem repeat; UKPDBB = UK Parkinson’s Disease Brain Bank.

At the initial quality control step (QC), we excluded all duplicate samples, sex mismatches, and samples that failed in the DNA fingerprint analysis because of low quantity or quality of DNA or because of contamination of the sample. Additional samples did not pass the 2-step genetic analysis because of DNA shortage or limited concentration of the DNA sample.
Briefly, the first patient developed left hemiparkinsonism at age 29 years and symptoms worsened progressively while dopamine agonists were only partially effective. In the second patient, parkinsonism began at age 48 years and a cognitive decline was noted at age 56 years. The third patient developed parkinsonism at age 64 years and developed a mild cognitive deficit at age 69. Although these 3 patients were clinically diagnosed with PD, they all had family histories of atypical parkinsonism, degenerative dementias, or ALS. No expansions were detected in patients with sporadic PD or patients with a familial history of PD. Moreover, mutations in known PD genes had previously been excluded in these 4 pathogenic expansion carriers.

We identified one Asian control of Chinese origin with an age at inclusion of 52 years carrying a pathogenic $(G_4C_2)_n$ repeat expansion (table 1). Currently, there is no record of any symptoms related to PD, FTLD, or ALS in this individual. This brings the estimated prevalence of pathogenic repeat expansions in controls to 0.02% (1/5,478). Apart from the expansion mutations, the distribution of repeat lengths ranged from 0 to 32 in the Caucasian and from 7 to 14 in the Asian control persons.

$C9orf72$ repeat and PD susceptibility. We investigated the role of $(G_4C_2)_n$ repeats in risk of PD. First, we assessed the distribution of the alleles in patients with PD vs controls in the GEO-PD cohort (figure 1). The frequencies of the $(G_4C_2)_{10}$ allele and of $(G_4C_2)_{17}$ were nominally increased in PD vs the controls but the differences were not statistically significant after Bonferroni correction (figure 1, table 3, figure e-1, A and B). Genotypic frequencies for $(G_4C_2)_{10}$ (table 3, figure e-1, C) and $(G_4C_2)_{17}$ (table 3, figure e-1, D) were not significantly different between patients and controls after correction for multiple testing. The estimated attributable fractions in the population are very low (table 3). When considering the sum of the alleles and the size of the maximum allele as a quantitative variable, we observed a small but significant increase of disease risk with a rising number of repeat units (sum of alleles $p = 0.0012$, summary effect $|B| = 0.0128 [0.00504–0.0205]$, figure e-2, A; maximum allele $p = 0.0010$, summary effect $|B| = 0.0181 [0.00731–0.029]$, figure e-2, B). Together, these results suggested that the risk effect may not only be linked to the $(G_4C_2)_{10}$ repeat but may be increasing with length while the effect in the larger alleles is probably masked by the small number of carriers. Therefore, we decided to analyze the risk effect of $C9orf72$ repeat expansions as a binary categorical value with a cutoff between 9 and 10. However, neither allele nor genotypic meta-analysis of the GEO-PD cohorts revealed significant association with PD for $(G_4C_2)_{\geq 10}$ repeat alleles after Bonferroni correction (table 3, figure e-3, A and B). Furthermore, the estimated population attributable risk is low (table 3).

DISCUSSION Molecular reclassification of complex brain diseases based on genetic etiology is of utmost importance to improve differential diagnosis and to rationalize drug development. Assessment of the contribution of novel disease genes to clinically and pathologically overlapping diseases is instrumental in this reclassification. In this global study, we assessed the prevalence of $(G_4C_2)_n$ repeat alleles and expansions in an extended PD cohort ascertained within the GEO-PD Consortium and excluded a major role for pathogenic $(G_4C_2)_{\geq 60}$ repeat expansions in the causation of PD. The low frequency of these expansions (0.06%) in the GEO-PD cohort is in agreement with earlier findings in distinct patient groups and falls in the range of frequencies observed in controls by us (0.02%) and others (0–0.6%). Furthermore, 75% of the pathogenic expansion carriers in this global study showed a decline in cognitive functions within 1 to 8 years after onset. In the absence of autopsy diagnoses, we therefore cannot exclude that some if not all of these expansion carriers are primarily FTLD/ALS patients with pronounced early parkinsonian symptoms or comorbidity of PD and FTLD/ALS. This hypothesis is supported by the identification of only one pathogenic mutation carrier.
in 826 (0.1%) autopsy-confirmed PD cases.23,24 Of note, this carrier presented, in addition to Lewy body pathology, with frontotemporal degeneration and C9orf72-ALS/FTLD pathology with numerous p62-positive inclusions. Furthermore, although substantia nigra involvement is common in C9orf72-positive ALS, it can be clearly distinguished from PD-related mechanisms by the presence of p62-positive inclusion and absence of Lewy body pathology.24

Altogether, it is not advisable to include C9orf72 (G4C2)n repeat expansion testing in a medical genetic diagnostic setting for typical PD patients. Exceptions can be made for patients with PD who have cognitive and/or behavioral deficits early in the disease process or in patients with a personal or familial history of FTLD/ALS. Given differences in the existing literature on C9orf72 (G4C2)n repeat length as risk factor for PD,12,15,16 we used the size of this global cohort to estimate a PD-related threshold of C9orf72 repeats. Calculation of the risk for each of the observed C9orf72 (G4C2)n alleles in the GEO-PD cohorts suggested a role for the 10-units repeat and for the pooled alleles of 17 units or more in PD susceptibility. Genotypic meta-analysis supported a possible link between (G4C2)10 and increased risk of PD but the association did not reach significance after correction for multiple testing. In addition, the number of carriers of these intermediate alleles is small and one should be cautious with the interpretation of these results. Furthermore, it is difficult to envisage the biological relevance of risk associated with a single

Figure 1: Overall distribution of C9orf72 repeat alleles in the GEO-PD cohorts

Only cohorts including both patients with PD and controls that were size-corrected based on the reference panel were included in the study. When the highest count for a specific allele was 5 or less across cohorts, the allele was clumped with the next allele for each cohort. (A) Allele frequencies. The p values for individual alleles were calculated using a Dersimonian-Laird random-effect meta-analysis. (B) Allele counts. *Nominally significant p values. Con = controls; GEO-PD = Genetic Epidemiology of Parkinson’s Disease; PD = Parkinson disease.
allele. Of note, we observed a small but significant increase in risk with an accumulative number of repeats supporting the idea of a threshold size rather than a single allele as the culprit of increased risk. We therefore decided to study the combined effect of (G₄C₂)ₚ alleles of 10 units and larger in the global GEO-PD cohort. Although meta-analyses implicated a potential role for these intermediate-sized repeats in PD risk, none of the associations survived Bonferroni correction suggesting that if C9orf72 repeats of 10 units or larger have a role in PD susceptibility, the effect is small. This is supported by the fact that none of the published genome-wide association studies revealed the C9orf72 locus as a risk factor for PD. A limitation of this study is that we did not yet include all published association studies of C9orf72 in PD; however, we chose to include only those studies that were corrected for allele scoring bias based on a reference panel.

Altogether, these data support the current hypothesis that pathogenic (G₄C₂)ₙ repeat expansions in C9orf72 appear to be specific for the FTLD/ALS spectrum with little or no contribution to the wider spectrum of movement disorders. It will be of interest to study the role of intermediate repeats ≥10 units in other neurodegenerative disorders, however, to obtain a more profound knowledge on their role in neurodegenerative diseases and a better understanding of the underlying mechanism.

AUTHOR AFFILIATIONS

From the Neurodegenerative Brain Diseases Group (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., M.C., C.V.B.), Department of Molecular Genetics, VIB, Antwerp; Institute Born-Bulte (J.T., A.V., K.S., E.W., I.G., S.S., D.C., E.C., E.E., S.E., P.F.D.D., P.C., M.C., C.V.B.); University of Antwerp, Department of Neurology (D.C., P.C.), Antwerp University Hospital, Edegem; Department of Neurology and Memory Clinic (S.E., P.F.D.D.); Hospital Network Antwerp, Middelheim and Hoge Beuken, Antwerp; Belgium; Department of Neurology and Alzheimer Research Center (P.P.D.D.), University of Groningen and University Medical Center Groningen, the Netherlands; Department of Neurodegenerative Diseases (M.S., R.K.), Heritie-Institute for Clinical Brain Research and DZNE-German Center for Neurodegenerative Diseases, Tuebingen; Institute for Clinical Epidemiology and Applied Biometry (M.S.), University of Tuebingen, Germany; INSERM, UMR_S975 (S.L., A.B.), Université Pierre et Marie Curie-Paris, CNRS, UMR 7225, AP-HP, Pitié-Salpêtrière Hospital; CNRS (S.L., A.B.); UMR 7225, Paris; AP-HP (A.B.), Pitié-Salpêtrière Hospital, Department of Genetics and Cytogenetics, Paris, France; Department of Neurology (S.E., M.-J.K., Y.J.K.), Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea; Departments of Neuroscience (O.A.R.) and Neurology (Z.K.W.), Mayo Clinic, Jacksonville, FL; Tanzi Centre for Research in Neurodegenerative Diseases (E.R., Z.X.), Department of Medicine, University of Toronto; Toronto Western Hospital Research Institute (A.E.L.), University Health Network, Toronto, Canada; Institute of Neuogenetics (C.K., A.W.), University of Lubeck, Germany; Eskitis Institute for Drug Discovery (G.D.M.), Griffith University, Queensland, University of Queensland (P.A.S.), Centre for Clinical Research, Queensland, Australia; Department of Neurology (G.M.H., E.D.); Neuroscience Unit, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece; Department of Neurology (N.H., K.O.); Juntendo University School of Medicine, Tokyo, Japan; Department of Neurology (E.-K.T., Y.Z.), Singapore General Hospital, National Neuroscience Institute, Singapore; Duke NUS Graduate Medical School (E.-K.T., Y.Z.); Singapore; Department of Neurology (J.A.), St. Olave’s Hospital, Trowbridge; Department of Neuroscience (J.A.), Norwegian University of Science and Technology (NTNU); Trowbridge, Norway; IRCCS Casa Sollievo della Sofferenza Hospital (E.M.V., S.P.), Mendel Laboratory, San Giovanni Rotondo; Institute of Molecular Biomaging and Physiology (G.A., A.Q.), National Research Council, Section of Gemmaneto (CZ); Institute of Neurology (A.Q.), Department of Medical Sciences, University Magna Graecia, Catanzaro, Department of Neuroscience (C.F., L.B.), Section of Neurology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy; Department of Neurology (A.D.), Max Plank Institute of Psychiatry, Munich, Germany; Department of Clinical Sciences (A.P.), Section of Neurology, Lund University; Department of Neurology (A.P.), Lund, Skåne University Hospital; Department of Clinical Sciences (C.N.), Clinical Memory Research Unit, Lund University, Sweden; Human Genetic Centre (G.G.), University Hospital of Liège, Belgium; Department of Neurology (M.S.L., R.F.P.), University of Tennessee Health Science Center, Memphis; Department of Neurology (M.B.-J., G.O.), Medical University of Silesia, Katowice, Poland; and Department of Neurology (D.M.M.), North Shore University Hospital System, Evanston, IL.

AUTHOR CONTRIBUTIONS

Jessie Theuns: drafting and revising the manuscript for content, study concept and design, analysis and interpretation of data, acquisition of data, statistical analysis, study supervision and coordination, obtaining funding. Aline Versluis: revising the manuscript for content, study design, analysis and interpretation of data, acquisition of data, statistical analysis, study coordination. Kristel Sleegers: drafting and revising the manuscript for content, study concept, analysis and interpretation of data, statistical analysis, obtaining funding. Eline Wauters: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Stefanie Smolders: revising the manuscript for content, analysis and interpretation of data, acquisition of data.
the manuscript for content, analysis and interpretation of data, acquisition of data. David Cross: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Ellen Gavillet: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Ellen Elinson: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Elleen Elinson: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Suzanne Lesage: revising the manuscript for content, acquisition of data, analysis and interpretation of data, acquisition of vital reagents, local study coordination. Alecis Bricc: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents, local study supervision. Sun Ju Chung: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents, local study supervision. Mi-Jung Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Young Jin Kim: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Zhogeni K. Wozolek: revising the manuscript for content, analysis and interpretation of clinical data, acquisition of clinical data, contribution of vital reagents. Eikaterina Rogova: revising the manuscript for content, analysis and interpretation of data, acquisition of data, contribution of vital reagents. Zhongxiu Xu: revising the manuscript for content, analysis and interpretation of data, acquisition of data. Anthony E. Lang: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Christine Klein: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Anne Weissbach: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Esteban Neagu: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Rostov Otagi: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Kotaro Ogaki: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Eng-Kong Tan: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Zhaoxiu Zhao: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Jan Audy: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Enza Maria Valente: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Simona Perucca: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Graziella Amendola: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Aldo Quattrone: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Carlo Ferrarese: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Andrea Paschmann: revising the manuscript for content, acquisition of clinical data and biospecimen, contribution of vital reagents, local study design, obtaining funding for local site. Gertier Nilsson: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Mark S. LeDoux: revising the manuscript for content, acquisition and interpretation of clinical data and biopsy specimen, contribution of vital reagents. Ronald F. Pfeffer: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Magdalena Buczak-Jedymin: revising the manuscript for content, acquisition of clinical data, analysis and interpretation of clinical data, contribution of vital reagents. Grzegorz Opala: revising the manuscript for content, acquisition of clinical data, contribution of vital reagents. Peter Paul De Deyn: revising the manuscript for content, local study design, acquisition of clinical data, interpretation of clinical data, contribution of vital reagents, local study supervision. Patrick Cras: revising the manuscript for content, local study design, acquisition of clinical data, interpretation of clinical data, contribution of vital reagents, local study supervision. Marc Cruys: drafting and revising the manuscript for content, study concept and design, analysis and interpretation of data, study supervision or coordination, obtaining funding. Christine Van Broeckhoven: drafting and revising the manuscript for content, study concept and design, analysis and interpretation of data, contribution of vital reagents/tools/patents, statistical analysis, study supervision or coordination, obtaining funding.

ACKNOWLEDGMENT

Belgium: The authors thank the VIB DG4 Generic Service Facility (http://www.vibgeneticsservicefacility.be) for technical assistance. Italy-Cosenza: The authors thank: Patrizia Tarantino, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of GermaNer (CZ), Italy and Monica Gagliardi, Institute of Molecular Bioimaging and Physiology, National Research Council, Section of GermaNer (CZ), Italy and Institute of Neurology, Department of Medical Sciences, University Magna Graecia, Catanzaro, Italy.

STUDY FUNDING

Belgium-Antwerp: The research is in part funded by the Belgian Science Policy Office Interuniversity Attraction Poles (IAP) program; the European Initiative on Centers of Excellence in Neurodegeneration (CoEN); the Flemish Government initiated Methusalem Excellence Programme (FWO); the Agency for Innovation by Science and Technology Flanders (IWT); the University of Antwerp Research Fund, Belgium; and the MekIIF Foundation for Medical Research Award to C.V.B. The FWO provided a PhD fellowship to A.V. and E.W. and the FWO a postdoctoral fellowship to I.G. The authors acknowledge the personnel of the Generic Service Facility of VIB (http://www.vibgeneticsservicefacility.be) and the Antwerp BioBank of the Institute Born-Bunge for their expert support. France: The authors thank the French Parkinson’s Disease Genetics Study Group: Y. Agid, M. Anheim, A.M. Bonnet, M. Borg, A. Brice, E. Broussolle, J.-C. Corvol, P. Damier, A. Destee, A. Diur, F. Darde, S. Klein, P. Krak, E. Lubahn, M. Martinez, P. Polak, O. Raux, F. Tison, C. Tranchant, M. Vernet, F. Vaillant, and M. Vidailhet; Franco-Parkinson Association and the French program “Investissements d’avenir” funding (ANR-10-IAIHU-006). USA-Florida: Mayo Clinic Florida is a Morris K. Udall Center of Excellence in PD Research at NIH/NINDS P50 NS072187, and is supported by NINDS R01 NS078086, the Michael J. Fox Foundation, Mayo Clinic Center for Regenerative Medicine, and a gift from Carl Edward Boloth, Jr., and Susan Bals Boloth. Canada: W. Garfield Weston Foundation and Ontario Research Fund (E.R.C.). Germany-Luebeck: C.K. is supported by a career development award from the Hermann and Lilly Schilling Foundation, Germany-Luebeck: The KORA (Cooperative Research in the Region of Augsburg) research platform was started and financed by the Forschungszentrum fuer Umwelt und Gesundheit, which is funded by the German Federal Ministry of Education, Science, Research, and Technology and by the State of Bavaria. This work has also been made possible by the kind support of the Michael J. Fox Foundation (MJP) for Parkinson’s Research (to Manu Sharma). This study was also funded by the German National Genome Network...
DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Received May 8, 2014. Accepted in final form August 13, 2014.

REFERENCES
Global investigation and meta-analysis of the C9orf72 (G4C2)n repeat in Parkinson disease
Jessie Theuns, Aline Verstraeten, Kristel Sleegers, et al.
Neurology 2014;83;1906-1913 Published Online before print October 17, 2014
DOI 10.1212/WNL.0000000000001012

This information is current as of October 17, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/83/21/1906.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC1
http://www.neurology.org/content/suppl/2014/10/17/WNL.0000000000001012.DC2

References
This article cites 30 articles, 4 of which you can access for free at:
http://www.neurology.org/content/83/21/1906.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Genetics
http://www.neurology.org/cgi/collection/all_genetics
Parkinson's disease/Parkinsonism
http://www.neurology.org/cgi/collection/parkinsons_disease_parkinsonism

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus