Teaching NeuroImages: Unmasking raccoon eyes
A classic clinical sign

Figure 1 Bilateral periorbital ecchymoses (raccoon eyes)

Figure 2 Head CT

Comminuted fracture of the medial wall of the orbit with hemorrhage protruding into the orbit: (A) bone window, (B) brain window.

From the University of Rochester Medical Center, NY.
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
A 65-year-old woman presented with head/facial trauma secondary to seizure. Examination revealed right-sided facial contusions and subconjunctival hemorrhage. Over 24 hours she developed bilateral periorbital ecchymoses: “raccoon eyes” (figure 1). Neuroimaging revealed right orbital fracture with hemorrhage into the orbit (figure 2). There was no basilar skull fracture or Battle sign (mastoid ecchymosis).

Raccoon eyes, a clinical sign most commonly associated with basilar skull fracture, can be seen in unilateral and bilateral orbital fractures. The differential, beyond trauma, includes most commonly metastatic neuroblastoma, Kaposi sarcoma, multiple myeloma, and amyloidosis. Neurologists should be aware of this sign and its differential.

AUTHOR CONTRIBUTIONS
Christopher Tarolli: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval. Michele A. Scully: drafting/revising the manuscript, accepts responsibility for conduct of research and final approval. Andrew D. Smith III: study concept or design, analysis or interpretation of data, accepts responsibility for conduct of research and final approval.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Unmasking raccoon eyes: A classic clinical sign
Christopher Tarolli, Michele A. Scully and Andrew D. Smith III
Neurology 2014;83:e58-e59
DOI 10.1212/WNL.0000000000000611

This information is current as of July 21, 2014

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/83/4/e58.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2014/07/20/83.4.e58.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/83/4/e58.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Imaging
http://www.neurology.org/cgi/collection/all_imaging
All Neuro-ophthalmology
http://www.neurology.org/cgi/collection/all_neuroophthalmology
All Trauma
http://www.neurology.org/cgi/collection/all_trauma
Clinical neurology examination
http://www.neurology.org/cgi/collection/clinical_neurology_examination
CT
http://www.neurology.org/cgi/collection/ct

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus