A 31-year-old man presented with a 3-month history of progressive dysarthria and 1 month of gradually worsening motor seizures predominantly affecting the right face. Examination was unremarkable except for a mild spastic dysarthria and slow, alternating tongue movements, probably due to a partial opercular syndrome. Seizures captured during EEG recording showed a jacksonian march starting over the opercular aspect of the motor homunculus, and anarthria and sialorrhea without EEG correlate (videos 1 and 2 on the Neurology® Web site at Neurology.org and figure 1). MRI brain showed a left opercular tumor (figure 2, A and B), found to be an anaplastic astrocytoma after resection. The patient has been seizure free for 12 months after treatment with carbamazepine and resective surgery but has residual dysarthria.

AUTHOR CONTRIBUTIONS

Dr. Extercatte wrote the first draft of the manuscript. Dr. de Haan provided information about final diagnosis and treatment and revised the final manuscript. Dr. Gaitatzis made the initial diagnosis and drafted and revised subsequent manuscripts.

STUDY FUNDING

No targeted funding reported.

From the SEIN-Epilepsy Institute in the Netherlands Foundation (J.E., G.-J.d.H., A.G.), Heemstede, the Netherlands and Shrewsbury and Telford Hospital NHS Trust (A.G.), Telford, UK.

Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Figure 2 Noncontrast MRI showing a left opercular lesion

(A) Axial fluid-attenuated inversion recovery image showing a left opercular lesion. (B) Coronal T2-weighted MRI showing the left opercular lesion with surrounding edema.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching Video NeuroImages: Frontal opercular seizures with jacksonian march
Jorunn Extercatte, Gerrit-Jan de Haan and Athanasios Gaitatzis
Neurology 2015;84:e83-e84
DOI 10.1212/WNL.0000000000001363

This information is current as of March 16, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/84/11/e83.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2015/03/14/WNL.0000000000001363.DC1
http://www.neurology.org/content/suppl/2015/03/14/WNL.0000000000001363.DC2

References
This article cites 1 articles, 0 of which you can access for free at:
http://www.neurology.org/content/84/11/e83.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Epilepsy semiology
http://www.neurology.org/cgi/collection/epilepsy_semiology
Partial seizures
http://www.neurology.org/cgi/collection/partial_seizures
Primary brain tumor
http://www.neurology.org/cgi/collection/primary_brain_tumor
Video/ EEG use in epilepsy
http://www.neurology.org/cgi/collection/video_eeg_use_in_epilepsy

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus

Neurology is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2015 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.