CNS angiitis as a brain tumor mimic with a branching vascular abnormality on T2* MRI

A 24-year-old woman with slowly progressive altered mental status and fevers was found to have multiple brain mass lesions. A characteristic branching vascular pattern on T2* MRI (figure 1D) was key to identifying these mass lesions as vascular in origin. CSF was inflammatory and serologic testing supported the diagnosis of systemic lupus erythematosus with concomitant CNS angiitis affecting deep medullary and ependymal veins, with resulting inflammation, hemorrhage, and infarct. Symptoms and mass effect/edema improved with steroid treatment and time. CNS angiitis can present as an intracranial mass lesion. The branching venous pattern on T2* MRI (figures 1D and 2D) is key to distinguishing from neoplasm.

Marc C. Mabray, MD, Soonmee Cha, MD
From the Department of Radiology and Biomedical Imaging, University of California San Francisco.

Author contributions: Marc Mabray: drafting/revising the manuscript for content, including medical writing for content, study concept or design, analysis or interpretation of data. Soonmee Cha: drafting/revising the manuscript for content, including medical writing for content, study concept or design, analysis or interpretation of data.

Study funding: Marc Mabray was supported by an NIH T32 grant (5T32EB001631-10). The funding body had no role in the performance of the study.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. Mabray: marc.mabray@ucsf.edu

Axial T1 (A), T1 postcontrast (B), T2 fluid-attenuated inversion recovery (C), and T2* MRI (D) of secondary CNS angiitis/venulitis. The branching centrally draining venous pattern on T2* (arrow) corresponding to engorged/thrombosed venules/veins is key to identifying the vascular etiology and distinguishing from neoplasm.
Coronal T2 fluid-attenuated inversion recovery (A), coronal T1 postcontrast (B), axial T1 postcontrast (C), and axial T2* MRI (D) of a companion case of primary CNS angiitis/venulitis. The branching centrally draining venous pattern on T2* (arrow) corresponding to engorged/thrombosed venules/veins is key to identifying the vascular etiology and distinguishing from neoplasm.

Learn How to Become a Leader in Changing Health Care

Do you have ideas on how to improve health care? Take the first step to turn ideas into action by learning to become an advocacy leader in your clinic, institution, or community. Apply for the AAN’s 2016 Palatucci Advocacy Leadership Forum, held from May 12 to 15 at the Hyatt Tamaya Resort and Spa in Albuquerque, NM. The application deadline is January 10, 2016.

Graduates of the Palatucci Forum are successfully creating positive and lasting changes for their patients and their profession across the globe. Many of today’s Academy leaders have participated in this advocacy training and recommend it. For more information or to apply, visit AAN.com/view/2016pal or contact Dave Showers at dshowers@aan.com or (612) 928-6132.

CNS angiitis as a brain tumor mimic with a branching vascular abnormality on T2*-MRI
Marc C. Mabray and Soonmee Cha
Neurology 2015;85;1819-1820
DOI 10.1212/WNL.0000000000002133

This information is current as of November 16, 2015

| Updated Information & Services | including high resolution figures, can be found at:
| References | http://www.neurology.org/content/85/20/1819.full.html
| Subspecialty Collections | This article cites 2 articles, 1 of which you can access for free at:
| | http://www.neurology.org/content/85/20/1819.full.html##ref-list-1
| | This article, along with others on similar topics, appears in the following collection(s):
| | Cerebral venous thrombosis
| | http://www.neurology.org/cgi/collection/cerebral_venous_thrombosis
| | Lupus
| | http://www.neurology.org/cgi/collection/lupus
| | MRI
| | http://www.neurology.org/cgi/collection/mri
| | Vasculitis
| | http://www.neurology.org/cgi/collection/vasculitis
| Permissions & Licensing | Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
| | http://www.neurology.org/misc/about.xhtml#permissions
| Reprints | Information about ordering reprints can be found online:
| | http://www.neurology.org/misc/addir.xhtml#reprintsus