A 30-year-old man with Ewing sarcoma presented with an enlarging metastatic osseous lesion involving the T10 vertebral body. Percutaneous cryoablation was performed under CT guidance for local tumor control; immediately following, he developed paraplegia. Early and delayed cord imaging show cryoablation-related injury (figures 1 and 2). The procedure involves targeted freezing of tissue to approximately −40°C and is usually safe for lesions involving the anterior vertebral body distant from the cord.1,2 Distant thermal effects with a temperature as low as 0°C can occur, however, up to 5 cm from the site of treatment.

Saad Ali, MD

From the Department of Radiology, Section of Neuroradiology, University of Chicago Medical Center, IL.

Study funding: No targeted funding reported.

Disclosure: The author reports no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. Ali: sali@radiology.bsd.uchicago.edu


Figure 2 Late follow-up postcryoablation

(A–E) Three-month posttreatment sagittal T2 and postgadolinium T1-weighted images and axial T2 and postgadolinium T1-weighted images: T2 hyperintensity and enhancement are seen in the ventral thoracic cord at the level of the ablation (arrows, B–D). Cord appears tethered to the dura ventrally due to scarring (arrow, A).

Get Connected. Stay Connected.
Connect with the American Academy of Neurology’s popular social media channels to stay up-to-date on the latest news and breakthroughs in neurology, and network with peers and neurology thought leaders. Visit AAN.com/Connect.

Neurology® Genetics Call For Papers

Neurology: Genetics is an open access, online only journal that provides neurologists with outstanding original contributions that elucidate the role of genetic and epigenetic variation in diseases and biological traits of the central and peripheral nervous system. We welcome all submissions. For more information on how to submit, visit http://www.neurology.org/site/gen/gen2.xhtml.
Frozen cord
Saad Ali
Neurology 2016;86;106-107
DOI 10.1212/WNL.0000000000002243

This information is current as of December 28, 2015

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/86/1/106.full.html

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/86/1/106.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Spinal cord infarction
http://www.neurology.org/cgi/collection/spinal_cord_infarction
Spinal cord trauma; see Trauma/spinal cord trauma
http://www.neurology.org/cgi/collection/spinal_cord_trauma-see_trau ma-spinal_cord_trauma

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus