Acute crossed cerebellar diaschisis is hypothesized to result from excessive transmission of excitatory input from the seizing cortex to the contralateral cerebellum via the corticopontocerebellar pathways.¹,² This case illustrates the imaging manifestations of this uncommon but important clinical entity.

AUTHOR CONTRIBUTIONS

Hediyeh Baradaran: data acquisition, drafting of manuscript.
Setareh Omran: data acquisition, drafting and revising of manuscript.

An 82-year-old woman with a history of chronic left parietal ischemic infarction presented with acutely altered mental status and abnormal right-sided movements. MRI (figure 1) demonstrated gyriform reduced diffusion signal, T2 hyperintensity, and swelling in the left cerebral hemisphere and contralateral right cerebellum. EEG (figure 2) revealed lateralized periodic discharges, likely representing seizure activity secondary to the chronic left parietal infarction.

(A) Diffusion-weighted image demonstrates diffuse gyriform diffusion hyperintensity throughout the left cerebral hemisphere, including the thalamus, pulvinar, and insula. (B) Diffusion hyperintensity in the contralateral right cerebellum. (C) Fluid-attenuated inversion recovery image demonstrates diffuse T2 hyperintensity and gyral swelling throughout the left cerebral hemisphere. (D) T1-weighted sequence demonstrates left parietal laminar necrosis (arrow) from prior left parietal infarction.
manuscript. J. Levi Chazen: revising of manuscript, concept of the manuscript.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Acute crossed cerebellar diaschisis
Hediyeh Baradaran, Setareh Omran and J. Levi Chazen
Neurology 2016;86;e154-e155
DOI 10.1212/WNL.0000000000002544

This information is current as of April 4, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/86/14/e154.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2016/04/02/WNL.0000000000002544.DC1

References
This article cites 1 articles, 1 of which you can access for free at:
http://www.neurology.org/content/86/14/e154.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
DWI
http://www.neurology.org/cgi/collection/dwi
MRI
http://www.neurology.org/cgi/collection/mri
Other cerebrovascular disease/Stroke
http://www.neurology.org/cgi/collection/other_cerebrovascular_disease__stroke
Status epilepticus
http://www.neurology.org/cgi/collection/status_epilepticus

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus