Teaching NeuroImages: Spontaneous resolution of a giant intracranial arachnoid cyst

A giant arachnoid cyst (6 × 8 × 11 cm) of left middle cranial fossa was found incidentally in a 3-year-old boy with head MRI examination for increased head circumference (figure 1). Surgical intervention was refused by his parents since the boy was asymptomatic, and the patient was followed up. Repeated MRI performed 2 years later revealed disappearance of the cyst, and the compressed brain tissue had significantly re-expanded (figure 2). There was no history of head trauma or stroke. The spontaneous resolution of a giant intracranial arachnoid cyst is extremely rare and the mechanism is not clear.1,2

AUTHOR CONTRIBUTIONS
Zhiyong Liu provided pictures of the patient and drafted the manuscript. Jin Li revised the manuscript. Jianguo Xu was responsible for the study concept and revised the manuscript for intellectual content.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES

Figure 1 Brain MRI

Axial T2-weighted imaging (A, B), axial T1-weighted imaging (D, E) and coronal FLAIR image (C, F) show a giant cystic lesion in the left middle cranial fossa, and brain tissue was significantly compressed. Arachnoid cyst was diagnosed, which is defined as simple cyst with CSF density on imaging displacing adjacent structures, with or without bony remodeling.
Axial T2-weighted imaging (A, B), axial T1-weighted imaging (D, E), and coronal FLAIR image (C, F) indicate the disappearance of the cyst and the compressed brain tissue has re-expanded into the seemingly normal left temporal lobe (arrow). Axial T1-weighted imaging (E) reveals that there was residual cyst wall (arrow).
Teaching NeuroImages: Spontaneous resolution of a giant intracranial arachnoid cyst
Zhiyong Liu, Jin Li and Jianguo Xu
*Neurology* 2016;86:e199-e200
DOI 10.1212/WNL.0000000000002639

This information is current as of May 2, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/86/18/e199.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2016/04/30/WNL.0000000000002639.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/86/18/e199.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
All Clinical Neurology
http://www.neurology.org/cgi/collection/all клиническая неврология
All Pediatric
http://www.neurology.org/cgi/collection/all pediatric
MRI
http://www.neurology.org/cgi/collection/mri
Natural history studies (prognosis)
http://www.neurology.org/cgi/collection/natural history studies прогноз

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus