Recurrent cryptogenic stroke in young adult linked to congenital left ventricular diverticulum

A 47-year-old man had an acute ischemic stroke (IS); brain MRI revealed multiple silent old IS (figure 1A). A comprehensive workup, including prolonged cardiac monitoring (cumulated duration of 25 days) and cardiac transthoracic/transesophageal echography, was negative. Eleven months later, despite statin and aspirin therapy, a new symptomatic embolic IS of undetermined source occurred (figure 1B). Cardiac MRI revealed a left apical dyskinetic saccular evagination (figure 2, A–C) consistent with a congenital left ventricular diverticulum.
confirmed on left ventriculography (figure 2D) and the presumed source of recurrent embolic IS. No IS occurred after 30 months of warfarin therapy.

Nicolas Gaillard, MD, Frederic Targosz, MD, Jean Louis Bertrand, MD, Denis Sablot, MD, Zoubir Mourad Bensalah, MD

From the Services de Neurologie (N.G., D.S.), Cardiologie (F.T.), and Radiologie (J.L.B., Z.M.B.), Centre Hospitalier de Perpignan, France.

Author contributions: Dr. Nicolas Gaillard: study concept, design, acquisition of data, and writing of the manuscript. Dr. Frederic Targosz: acquisition and analysis of data. Dr. Jean Louis Bertrand: acquisition and analysis of data. Dr. Denis Sablot: acquisition and analysis of data. Dr. Zoubir Mourad Bensalah: acquisition and analysis of data, study supervision, and critical revision of the manuscript.

Study funding: No targeted funding reported.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. Gaillard: nicola.gaillard@wanadoo.fr or n-gaillard@chu-montpellier.fr


Recurrent cryptogenic stroke in young adult linked to congenital left ventricular diverticulum
Nicolas Gaillard, Frederic Targosz, Jean Louis Bertrand, et al.
Neurology 2016;87:2169-2170
DOI 10.1212/WNL.0000000000003341

This information is current as of November 14, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/87/20/2169.full.html

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/87/20/2169.full.html#ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Cardiac
http://www.neurology.org//cgi/collection/cardiac
Embolism
http://www.neurology.org//cgi/collection/embolism
Infarction
http://www.neurology.org//cgi/collection/infarction
Stroke in young adults
http://www.neurology.org//cgi/collection/stroke_in_young_adults

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus