Usefulness of susceptibility-weighted sequences after traumatic brain injury

Three weeks after severe traumatic brain injury (pedestrian hit by a car) and correction of initial intracranial hypertension, a brain MRI is performed in a 22-year-old woman, who remains in a comatose state (Glasgow Coma Scale at 4, with withdrawal to painful stimuli; abolition of photomotor reflex; persistence of corneal and cough reflexes). Fluid-attenuated inversion recovery and T2*-weighted gradient-echo sequences reveal subtle hyperintensities within the brainstem. On susceptibility-weighted imaging, extensive diffuse axonal injuries are identified in the brainstem, thalami, corpus callosum, and frontal lobes, which explain the clinical state (figure).

Susceptibility-weighted imaging is a gradient-echo sequence combining phase and magnitude information,
highly sensitive in the detection of magnetic field variation, especially generated by hemoglobin degradation products.1 It is more accurate in the detection of diffuse axonal injuries after brain injury, which is mandatory, as their presence is correlated to functional and cognitive prognosis.2

AUTHOR CONTRIBUTIONS
Thomas Ritzenthaler: drafting/revising the manuscript, analysis or interpretation of data, accepts responsibility for conduct of research and will give final approval, acquisition of data, study supervision. Leila Chamard: analysis or interpretation of data, accepts responsibility for conduct of research and will give final approval, acquisition of data. Frédéric Dailler: drafting/revising the manuscript, accepts responsibility for conduct of research and will give final approval, study supervision.

STUDY FUNDING
No targeted funding reported.

DISCLOSURE
The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

REFERENCES
Teaching NeuroImages: Usefulness of susceptibility-weighted sequences after traumatic brain injury
Thomas Ritzenthaler, Leila Chamard and Frédéric Dailler
Neurology 2016;87:e83-e84
DOI 10.1212/WNL.0000000000003007

This information is current as of August 22, 2016

Updated Information & Services
including high resolution figures, can be found at:
http://www.neurology.org/content/87/8/e83.full.html

Supplementary Material
Supplementary material can be found at:
http://www.neurology.org/content/suppl/2016/08/20/WNL.000000000
003007.DC1

References
This article cites 2 articles, 0 of which you can access for free at:
http://www.neurology.org/content/87/8/e83.full.html##ref-list-1

Subspecialty Collections
This article, along with others on similar topics, appears in the following collection(s):
Brain trauma
http://www.neurology.org/cgi/collection/brain_trauma
Coma
http://www.neurology.org/cgi/collection/coma
MRI
http://www.neurology.org/cgi/collection/mri
Prognosis
http://www.neurology.org/cgi/collection/prognosis

Permissions & Licensing
Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at:
http://www.neurology.org/misc/about.xhtml#permissions

Reprints
Information about ordering reprints can be found online:
http://www.neurology.org/misc/addir.xhtml#reprintsus