Skip to main content
AAN.com

Abstract

Background: Inconsistent changes of cognitive functioning have been reported in patients with Parkinson disease (PD) with deep brain stimulation (DBS) of the subthalamic nucleus (STN). To investigate the underlying pathomechanisms, we correlated alterations of cognitive test performance and changes of neuronal energy metabolism in frontal basal ganglia projection areas under bilateral STN stimulation.
Methods: We conducted verbal fluency, learning, and memory tests and 18-fluorodeoxyglucose (FDG) PET in nine patients with PD with STN-DBS before and 6 months after surgery. Using coregistered MRI, postoperative changes of the normalized cerebral metabolic rates of glucose (nCMRGlc) in the dorsolateral prefrontal cortex (DLPFC), lateral orbitofrontal cortex (LOFC), ventral and dorsal cingulum (v/dACC), and in Broca area were determined and correlated with alterations of neuropsychological test results.
Results: After surgery, highly variable changes of both cognitive test performance and frontal nCMRGlc values were found with significant correlations between verbal fluency and FDG uptake in the left DLPFC (Brodmann area [BA] 9, 46), left Broca area (BA 44/45), and the right dACC (BA 32). A decrease of nCMRGlc in the left OFC (BA 11/47) and dACC (BA 32) correlated with a decline of verbal learning. All patients showed reduced metabolic activity in the right anterior cingulate cortex after DBS. Baseline cognitive abilities did not predict verbal learning or fluency changes after surgery.
Conclusions: These data show a significant linear relationship between changes in frontal 18-fluorodeoxyglucose PET activity and changes in cognitive outcome after deep brain stimulation of the subthalamic nucleus (STN) in advanced Parkinson disease. The best correlations were found in the left frontal lobe (dorsolateral prefrontal cortex and Broca area). Baseline performance on cognitive tests did not predict cognitive or metabolic changes after STN electrode implantation.

Get full access to this article

View all available purchase options and get full access to this article.

Supplementary Material

File (figure_e-1.tif)
File (figure_e-2.tif)
File (figure_e-3.tif)
File (figure_e-4.tif)
File (kalbe.pdf)
File (kelbe.pdf)

REFERENCES

1.
Krack P, Batir A, Van Blercom N, et al. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 2003;349:1925–1934.
2.
Parsons TD, Rogers SA, Braaten AJ, Woods SP, Troster AI. Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol 2006;5:578–588.
3.
Voon V, Kubu C, Krack P, Houeto JL, Troster AI. Deep brain stimulation: neuropsychological and neuropsychiatric issues. Mov Disord 2006;21(suppl 14):305–327.
4.
Temel Y, Kessels A, Tan S, Topdag A, Boon P, Visser-Vandewalle V. Behavioural changes after bilateral subthalamic stimulation in advanced Parkinson disease: a systematic review. Parkinsonism Relat Disorders 2006;12:265–272.
5.
Funkiewiez A, Ardouin C, Caputo E, et al. Long term effects of bilateral subthalamic nucleus stimulation on cognitive function, mood, and behaviour in Parkinson’s disease. J Neurol Neurosurg Psychiatr 2004;75:834–839.
6.
Saint-Cyr JA, Trepanier LL, Kumar R, Lozano AM, Lang AE. Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson’s disease. Brain 2000;123:2091–2108.
7.
Jahanshahi M, Ardouin CM, Brown RG, et al. The impact of deep brain stimulation on executive function in Parkinson’s disease. Brain 2000;123:1142–1154.
8.
Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;14:55–59.
9.
Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson’s disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry 1992;55:181–184.
10.
Defer GL, Widner H, Marié RM, Rémy P, Levivier M. Core assessment program for surgical interventional therapies in Parkinson’s disease (CAPSIT-PD). Mov Disord 1999;14:572–584.
11.
Mattis S. Dementia Rating Scale: Professional Manual. Odessa, FL: Psychological Assessment Resources, Inc., 1988.
12.
Beck AT, Hautzinger M, Bailer M, Worall H, Keller F. Beck-Depressions-Inventar (BDI). Göttingen: Hogrefe; 1995.
13.
Voges J, Volkmann J, Allert N, et al. Bilateral high-frequency stimulation in the subthalamic nucleus for the treatment of Parkinson disease: correlation of therapeutic effect with anatomical electrode position. J Neurosurg 2002;96:269–279.
14.
Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 2004;24:7–16.
15.
Treuer H, Klein D, Maarouf M, Lehrke R, Voges J, Sturm V. Accuracy and conformity of stereotactically guided interstitial brain tumour therapy using I-125 seeds. Radiother Oncol 2005;77:202–209.
16.
Herzog J, Volkmann J, Krack P, et al. Two-year follow-up of subthalamic deep brain stimulation in Parkinson’s disease. Mov Disord 2003;18:1332–1337.
17.
Strauss E, Sherman EMS, Spreen O. A Compendium of Neuropsychological Tests. Administration, Norms, and Commentary, 3rd edition ed. Oxford: University Press; 2006.
18.
Schaaf A, Kessler J, Grond M, Fink G. Memo Test. Ein verbaler Gedächtnistest nach der Methode des selektiven Erinnerns. Weinheim: Beltz-Test-Verlag; 1992.
19.
Helmstaedter C, Lendt M, Lux S. Verbaler Lern- und Merkfähigkeitstest (VLMT). Göttingen: Hogrefe; 2001.
20.
Phelps ME, Huang SC, Hoffman EJ, Selin C, Sokoloff L, Kuhl DE. Tomographic measurement of local cerebral glucose metabolic rate in humans with (F-18)2-fluoro-2- deoxy-D-glucose: validation of method. Ann Neurol 1979;6:371–388.
21.
Wienhard K, Dahlbom M, Eriksson L, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comput Assist Tomogr 1994;18:110–118.
22.
Pietrzyk U, Herholz K, Fink G, et al. An interactive technique for three-dimensional image registration: validation for PET, SPECT, MRI and CT brain studies. J Nucl Med 1994;35:2011–2018.
23.
Eidelberg D, Moeller JR, Dhawan V, et al. The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 1994;14:783–801.
24.
Jacobson NS, Truax P. Clinical significance: a statistical approach to defining meaningful change in psychotherapy research. J Consult Clin Psychol 1991;59:12–19.
25.
Troster AI, Woods SP, Morgan EE. Assessing cognitive change in Parkinson’s disease: development of practice effect-corrected reliable change indices. Arch Clin Neuropsychol 2007;22:711–718.
26.
Gourovitch ML, Kirkby BS, Goldberg TE, et al. A comparison of rCBF patterns during letter and semantic fluency. Neuropsychology 2000;14:353–360.
27.
Costafreda SG, Fu CH, Lee L, Everitt B, Brammer MJ, David AS. A systematic review and quantitative appraisal of fMRI studies of verbal fluency: role of the left inferior frontal gyrus. Human Brain Mapp 2006;27:799–810.
28.
Schroeder U, Kuehler A, Lange KW, et al. Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 2003;54:445–450.
29.
Marsden CD, Obeso JA. The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson’s disease. Brain 1994;117:877–897.
30.
Posner MI, Dehaene S. Attentional networks. Trends Neurosci 1994;17:75–79.
31.
Wager TD, Smith EE. Neuroimaging studies of working memory: a meta-analysis. Cogn Affect Behav Neurosci 2003;3:255–274.
32.
Mega MS, Cummings JL. Frontal-subcortical circuits and neuropsychiatric disorders. J Neuropsychiatry Clin Neurosci 1994;6:358–370.
33.
Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 1999;402:179–181.
34.
Schroeder U, Kuehler A, Haslinger B, et al. Subthalamic nucleus stimulation affects striato- anterior cingulate cortex circuit in a response conflict task: a PET study. Brain 2002;125:1995–2004.
35.
Laplane D, Baulac M, Widlocher D, Dubois B. Pure psychic akinesia with bilateral lesions of basal ganglia. J Neurol Neurosurg Psychiatry 1984;47:377–385.

Information & Authors

Information

Published In

Neurology®
Volume 72Number 1January 6, 2009
Pages: 42-49
PubMed: 19122029

Publication History

Published online: January 2, 2009
Published in print: January 6, 2009

Permissions

Request permissions for this article.

Authors

Affiliations & Disclosures

E. Kalbe, PhD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
J. Voges, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
T. Weber, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
M. Haarer, MSc, Psy
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
S. Baudrexel, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
J. C. Klein, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
J. Kessler, PhD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
V. Sturm, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
W. D. Heiss, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.
R. Hilker, MD
From the Departments of Neurology (E.K., T.W., M.H., J.K.) and Stereotaxy and Functional Neurosurgery (V.S.), University of Cologne; Department of Stereotactic Neurosurgery (J.V.), University of Magdeburg; Department of Neurology (S.B., J.C.K., R.H.), Goethe-University Frankfurt; and Max-Planck Institute for Neurological Research (W.D.H.), Cologne, Germany.

Notes

Address correspondence and reprint requests to Dr. Elke Kalbe, Department of Neurology, University Hospital, Kerpener Str. 62, D-50937 Cologne, Germany [email protected]

Metrics & Citations

Metrics

Citation information is sourced from Crossref Cited-by service.

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. Impact of Stimulation Frequency on Verbal Fluency Following Bilateral Subthalamic Nucleus Deep Brain Stimulation in Parkinson’s Disease, Archives of Clinical Neuropsychology, (2024).https://doi.org/10.1093/arclin/acae062
    Crossref
  2. Research Applications of Positron Emission Tomography/Magnetic Resonance (PET/MR) Imaging in Neurosurgery, PET/MR: Functional and Molecular Imaging of Neurological Diseases and Neurosciences, (111-125), (2023).https://doi.org/10.1007/978-981-19-9902-4_6
    Crossref
  3. Short and Long-Term Cognitive Effects of Subthalamic Deep Brain Stimulation in Parkinson’s Disease and Identification of Relevant Factors, Journal of Parkinson's Disease, 12, 7, (2191-2209), (2022).https://doi.org/10.3233/JPD-223446
    Crossref
  4. Metabolic patterns in brain 18F-fluorodeoxyglucose PET relate to aetiology in paediatric dystonia, Brain, 146, 6, (2512-2523), (2022).https://doi.org/10.1093/brain/awac439
    Crossref
  5. Predictors of multi-domain cognitive decline following DBS for treatment of Parkinson's disease, Parkinsonism & Related Disorders, 95, (23-27), (2022).https://doi.org/10.1016/j.parkreldis.2021.12.011
    Crossref
  6. Deep brain stimulation in neurological diseases and other pathologies, Neurology Perspectives, 2, 3, (151-159), (2022).https://doi.org/10.1016/j.neurop.2022.03.001
    Crossref
  7. Cortical hemodynamic mapping of subthalamic nucleus deep brain stimulation in Parkinsonian patients, using high-density functional near-infrared spectroscopy, PLOS ONE, 16, 1, (e0245188), (2021).https://doi.org/10.1371/journal.pone.0245188
    Crossref
  8. Anterior lead location predicts verbal fluency decline following STN-DBS in Parkinson's disease, Parkinsonism & Related Disorders, 92, (36-40), (2021).https://doi.org/10.1016/j.parkreldis.2021.10.012
    Crossref
  9. Magnetic resonance-guided focused ultrasound for Parkinson’s disease since ExAblate, 2016–2019: a systematic review, Neurological Sciences, 42, 2, (553-563), (2021).https://doi.org/10.1007/s10072-020-05020-1
    Crossref
  10. Deep brain stimulation effects on verbal fluency dissociated by target and active contact location, Annals of Clinical and Translational Neurology, 8, 3, (613-622), (2021).https://doi.org/10.1002/acn3.51304
    Crossref
  11. See more
Loading...

View Options

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

The neurology.org payment platform is currently offline. Our technical team is working as quickly as possible to restore service.

If you need immediate support or to place an order, please call or email customer service:

  • 1-800-638-3030 for U.S. customers - 8:30 - 7 pm ET (M-F)
  • 1-301-223-2300 for customers outside the U.S. - 8:30 - 7 pm ET (M-F)
  • [email protected]

We appreciate your patience during this time and apologize for any inconvenience.

View options

PDF and All Supplements

Download PDF and Supplementary Material

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share