Skip to main content
AAN.com
Articles
May 1, 1996

Calcium channel blockers and transmitter release at the normal human neurornuscular junction

May 1996 issue
46 (5) 1391

Abstract

Transmitter release evoked by nerve stimulation is highly dependent on Ca2+ entry through voltage-activated plasma membrane channels. Calcium influx may be modified in some neuromuscular diseases like Lambert-Eaton syndrome and amyotrophic lateral sclerosis. We studied the pharmacologic sensitivity of the transmitter release process to different calcium channel blockers in normal human muscles and found that funnel web toxin and Ω-Agatoxin-IVA, both P-type calcium channel blockers, blocked nerve-elicited muscle action potentials and inhibited evoked synaptic transmission. The transmitter release was not affected either by nitrendipine, an L-type channel blocker, or Ω-Conotoxin-GVIA, an N-type channel blocker. The pharmacologic profile of neuromuscular transmission observed in normal human muscles indicates that P-like channels mediate transmitter release at the motor nerve terminals.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Katz B. The release of neurotransmitter substances. Liverpool: University Press, 1969.
2.
Llinas RR. Depolarization release coupling: an overview. Ann NY Acad Sci 1991;635:3–17.
3.
Carbone E, Lux HD. A low voltage-activated calcium conductance in embryonic chick sensory neurons. Nature 1984;310: 501–502.
4.
Dunlap K, Luebke JL, Turner TJ. Exocitotic Cat2+ channels in mammalian central neurons. Trends Neurosci 1995;18:89–98.
5.
Hess P, Lansman JB, Tsien RW. Different modes of Ca2+ channel gating behaviour favoured by dihidropyridine Ca2+ agonists and antagonists. Nature 1984;311:538–544.
6.
Tsien RW, Lipscombe D, Madison DV, Bley KR, Fox P. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 1988;11:431–438.
7.
McCleskey EW, Fox AP, Feldman DH, et al. Ω-Conotoxin direct and persistent blockade of specific types of calcium channels in neurons but not muscles. Proc Natl Acad Sci USA 1987;84:4327–4331.
8.
Llinas RR, Sugimori M, Lin JW, Cherksey BD. Blocking and isolation of a calcium channel from neurons in mammalian and cephalopods utilizing a toxin fraction (FTX) from funnel web spider poison. Proc Natl Acad Sci USA 1989;86:1689–1693.
9.
Mintz I, Adams M, Bean B. P-type calcium channels in rat central and peripheral neurons. Neuron 1992-b;9:85–95.
10.
Mintz IM, Venema VJ, Swiderek KM, Lee TD, Bean BP, Adams ME. P-type calcium channels blocked by the spider toxin Ω-Aga-IVA. Nature 1992-a;335:827–829.
11.
Randall AD, Wendland B, Schweizer F, Miljanich G, Adams ME, Tsien RW. Five pharmacologically distinct high voltage-activated Ca2+ channels in cerebellar granule cells [abstract]. Soc Neurosci Abstracts 1993;19:1478.
12.
Uchitel OD, Protti DA, Sanchez VN, Cherksey BD, Sugimori M, Llinas RR. P-type voltage dependent calcium channel mediates presynaptic calcium influx and transmitter release in mammalian synapses. Proc Natl Acad Sci USA 1992;89:3330–3333.
13.
Protti DA, Uchitel OD. Transmitter release and presynaptic Ca2+ currents blocked by the spider toxin Ω-Aga-IVA. Neuro-report 1993;5:333–336.
14.
Protti DA, Uchitel OD. Calcium influx through P-type channels activates closely associated calcium dependent potassium channels at the mouse motor nerve terminals [abstract]. SOC Neurosci Abstracts 1994;20:1719.
15.
Sher E, Gotti C, Canal N, et al. Specificity of calcium channel autoantibodies in Lambed-Eaton myasthenic syndrome. Lancet 1989;2:640–643.
16.
Mosier DR, Baldelli P, Delbono O, et al. Amyotrophic lateral sclerosis immunoglobulins increase Ca2+ currents in a motoneuron cell line. Ann Neurol 1995;37:102–109.
17.
Uchitel OD, Appel SH, Crawford F, Sczcupak L. Immunoglobulins from amyotrophic lateral sclerosis patients enhance spontaneous transmitter release from motor nerve terminals. Proc Natl Acad Sci USA 1988;85:7371–7374.
18.
Sano K, Enomoto K, Maeno T. Effects of synthetic Ω-conotoxin, a new type Ca2+ antagonist, on frog and mouse neuro-muscular transmission. Eur J Pharmacol 1987;141:235–241.
19.
Swash M, Ingram DA. Adverse effect of verapamil in myasthenia gravis. Muscle Nerve 1992;15:396–398.
20.
Krendel DA, Hopkins LC. Adverse effect of verapamil in a patient with the Lambert-Eaton myasthenic syndrome. Muscle Nerve 1986;9:519–522.
21.
Uchitel OD, Scornik FS, Protti DA, Fumberg CG, Alvarez VA, Appel SH. Long-term neuromuscular dysfunction produced by passive transfer of amyotrophic lateral sclerosis (ALS) immunoglobulins. Neurology 1992;42:2175–2180.
22.
Llinas RR, Sugimori M, Cherksey BD, et al. IgG from amyotrophic lateral sclerosis patients increases current through P-type calcium channels in mammalian cerebellar Purkinje cells and in isolated channel protein in lipid bilayer. Proc Natl Acad Sci USA 1993;90:11743–11747.
23.
Delbono O, Garcia J, Appel SH, Stefani E. Am J Physiol 1991;260:C1347–C1351.
24.
Protti DA, Reisin R, Angelillo Mackinley T, Uchitel OD. Transmitter release at the human neuromuscular junction is mediated by P-type calcium channels [abstract]. Neurology 1993;43(suppl 4):A166.
25.
Katz E, Ferro PA, Cherksey BD, Sugimori M, Llinas RR, Uchitel OD. Effects of Ca2+ channel blockers on transmitter release and presynaptic currents at the frog neuromuscular junction. J Phvsiol (Lond) 1995:48613):695–706.
26.
Ousley AH, Froehner SC. An anti-peptide antibody specific for the class A calcium channel β1 subunit labels mammalian neuromuscular junction. Proc Natl Acad Sci USA 1994;91: 12263–12267.
27.
Wheeler DB, Tsien RW, Randall A. Identification of calcium channels that control neurosecretion. Science 1994;266:830–831.
28.
Dunlap K, Luebke JI, Turner TI. Identification of calcium channels that control neurosecretion. Science 1994;266:828–830.
29.
Lang B, Molenaar PC, Newsom-Davis J, Vincent A. Passive transfer of LEMS in mice: decreased rate of resting and evoked release of acetylcholine from skeletal muscle. J Neurochem 1984;42:658–662.
30.
Leveque C, Hoshino T, Pascale D, et al. The synaptic vesicle protein synaptotagmin associates with calcium channels and is a putative Lambert-Eaton myasthenic syndrome antigen. Proc Natl Acad Sci USA 1992;89:3625–3629.
31.
Wessler I, Dooley DJ, Osswald H, Schlemmer F. Differential blockade by nifedipine and Ω-Conotoxin-GVIA of alfa 1 and beta 1 adrenoreceptor-controlled calcium channels on motor nerve terminals of the rat. Neurosci Lett 1990;108:173–178.
32.
Wessler I, Dooley DJ, Werhand J, Schlemmer F. Differential effects of calcium channel antagonists (omega-conotoxin-GVIA, nifedipine, verapamil) on the electrically evoked re-lease of [3H]acetylcholine from myenteric plexus, phrenic nerve and neocortex of rats. Naunyn Schmiedebergs Arch Pharmacol 1990;341:288–294.
33.
Atchinson WD. Dihidropiridine-sensitive and insensitive components of acetylcholine release from rat motor nerve terminals. J Pharmacol Exp Ther 1989;251:672–678.
34.
Pancrazio JJ, Viglione MP, Kim YI. Effect of BayK 8644 on spontaneous and evoked transmitter release at the mouse neuromuscular junction. Neuroscience 1989;30:215–221.

Information & Authors

Information

Published In

Neurology®
Volume 46Number 5May 1996
Pages: 1391
PubMed: 8628488

Publication History

Published online: May 1, 1996
Published in print: May 1996

Permissions

Request permissions for this article.

Authors

Affiliations & Disclosures

Tomas Angelillo Mackinley, MD
Osvaldo D. Uchitel, MD
School of Medicine, University of Buenos Aires, Buenos Aires, Argentina (Dr. Protti) (Dr. Uchitel)
British Hospital, Buenos Aires, Argentina. (Dr. Reisin) (Dr. Mackinley)

Notes

Address correspondence and reprint requests to Dr. Osvaldo D. Uchitel, Instituto de Biologia Celulary Neurociencias: “Prof. Eduardo de Robertis,” Facultad de Medicina, Paraguay 2155, Buenos Aires (1121), Argentina.

Metrics & Citations

Metrics

Citation information is sourced from Crossref Cited-by service.

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. Voltage-Dependent Calcium Channels in Mammalian Motor Synapses: Triggers and Modulators of Neuromuscular Transmission, Journal of Evolutionary Biochemistry and Physiology, 60, 5, (1975-2004), (2024).https://doi.org/10.1134/S0022093024050259
    Crossref
  2. Roles and Sources of Calcium in Synaptic Exocytosis, Molecular Mechanisms of Neurotransmitter Release, (139-170), (2023).https://doi.org/10.1007/978-3-031-34229-5_6
    Crossref
  3. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses, Biomolecules, 12, 2, (179), (2022).https://doi.org/10.3390/biom12020179
    Crossref
  4. Optimization of Application-Driven Development of In Vitro Neuromuscular Junction Models , Tissue Engineering Part B: Reviews, 28, 6, (1180-1191), (2022).https://doi.org/10.1089/ten.teb.2021.0204
    Crossref
  5. Utilidad de los anticuerpos en las enfermedades de la unión neuromuscular: revisión, Neurología Argentina, 14, 1, (37-50), (2022).https://doi.org/10.1016/j.neuarg.2021.08.004
    Crossref
  6. Metabolic Profiling of Vasorelaxant Extract from Malvaviscus arboreus by LC/QTOF‐MS , Chemistry & Biodiversity, 18, 4, (2021).https://doi.org/10.1002/cbdv.202000820
    Crossref
  7. Pathomechanisms and Clinical Implications of Myasthenic Syndromes Exacerbated and Induced by Medical Treatments, Frontiers in Molecular Neuroscience, 13, (2020).https://doi.org/10.3389/fnmol.2020.00156
    Crossref
  8. Super-resolution microscopy for analyzing neuromuscular junctions and synapses, Neuroscience Letters, 715, (134644), (2020).https://doi.org/10.1016/j.neulet.2019.134644
    Crossref
  9. Anesthesia-Related Complications in Neuromuscular Disorders in Adults, Neuromuscular Urgencies and Emergencies, (131-145), (2020).https://doi.org/10.1007/978-3-030-53145-4_6
    Crossref
  10. In vitro and ex vivo screening of candidate therapeutics to restore neurotransmission in nerve terminals intoxicated by botulinum neurotoxin serotype A1, Toxicon, 147, (47-53), (2018).https://doi.org/10.1016/j.toxicon.2017.10.017
    Crossref
  11. See more
Loading...

View Options

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

The neurology.org payment platform is currently offline. Our technical team is working as quickly as possible to restore service.

If you need immediate support or to place an order, please call or email customer service:

  • 1-800-638-3030 for U.S. customers - 8:30 - 7 pm ET (M-F)
  • 1-301-223-2300 for customers outside the U.S. - 8:30 - 7 pm ET (M-F)
  • [email protected]

We appreciate your patience during this time and apologize for any inconvenience.

View options

PDF and All Supplements

Download PDF and Supplementary Material

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share