Skip to main content
AAN.com

Abstract

Management of low-grade gliomas continues to be a challenging task, because CT and MRI do not always differentiate from nontumoral lesions. Furthermore, tumor extent and aggressiveness often remain unclear because of a lack of contrast enhancement. Previous studies indicated that large neutral amino acid tracers accumulate in most brain tumors, including low-grade gliomas, probably because of changes of endothelial and blood-brain barrier function. We describe 11C-methionine uptake measured with PET in a series of 196 consecutive patients, most of whom were studied because of suspected low-grade gliomas. Uptake in the most active lesion area, relative to contralateral side, was significantly different among high-grade gliomas, low-grade gliomas, and chronic or subacute nontumoral lesions, and this difference was independent from contrast enhancement in CT or MRI. Corticosteroids had no significant effect on methionine uptake in low-grade gliomas but reduced uptake moderately in high-grade gliomas. Differentiation between gliomas and nontumoral lesions by a simple threshold was correct in 79%. Recurrent or residual tumors had a higher uptake than primary gliomas. In conclusion, the high sensitivity of 11C-methionine uptake for functional endothelial or blood-brain barrier changes suggests that this tracer is particularly useful for evaluation and follow-up of low-grade gliomas.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Russel DS, Rubinstein LJ. Pathology of tumors of the nervous system. 5th ed. London: Edward Arnold, 1989.
2.
Voges J, Schröder R, Treuer H, et al. CT-guided and computer assisted stereotactic biopsy. Technique, results, indications. Acta Neurochir 1993;125:142-149.
3.
Glantz MJ, Burger PC, Herndon JE 2, et al. Influence of the type of surgery on the histologic diagnosis in patients with anaplastic gliomas. Neurology 1991;41:1741-1744.
4.
Berger MS, Deliganis AV, Dobbins J, Keles GE. The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 1994;74:1784-1791.
5.
Voges J, Treuer H, Schlegel W, Pastyr O, Sturm V. Interstitial irradiation of cerebral gliomas with stereotactically implanted iodine-125 seeds. Acta Neurochir 1993;58:108-111.
6.
Imperato JP, Paleologos NA, Vick NA. Effects of treatment on long-term survivors with malignant astrocytomas. Ann Neurol 1990;28:818-822.
7.
Lilja A, Bergstrom K, Hartvig P, et al. Dynamic study of supratentorial gliomas with L-methyl-11C-methionine and positron emission tomography. Am J Neuroradiol 1985;6:505-514.
8.
Derlon JM, Bourdet C, Bustany P, et al.[11C]L-methionine uptake in gliomas. Neurosurgery 1989;25:720-728.
9.
O'Tuama LA, Phillips PC, Strauss LC, et al. Two-phase[11C]L-methionine PET in childhood brain tumors. Pediatr Neurol 1990;6:163-170.
10.
Ogawa T, Shishido F, Kanno I, et al. Cerebral glioma: evaluation with methionine PET. Radiology 1993;186:45-53.
11.
Berger G, Maziere M, Knipper R, Prenant C, Comar D. Automated synthesis of 11C-labelled radiopharmaceuticals: imipramine, chlorpromazine, nicotine and methionine. Int J Appl Radiat Isotopes 1979;30:393-399.
12.
Wienhard K, Dahlbom M, Eriksson L, et al. The ECAT EXACT HR: performance of a new high resolution positron scanner. J Comp Assist Tomogr 1994;18:110-118.
13.
Wienhard K, Eriksson L, Grootoonk S, Casey M, Pietrzyk U, Heiss WD. Performance evaluation of the positron scanner ECAT EXACT. J Comp Assist Tomogr 1992;16:804-813.
14.
Townsend DW, Geissbuhler A, Defrise M, et al. Fully 3-dimensional reconstruction for a PET camera with retractable septa. IEEE Trans Med Imag 1991;10:505-512.
15.
Kleihues P, Burger PC, Scheithauer BW. Histological typing of tumors of the central nervous system. 2nd ed. Berlin: Springer, 1993.
16.
Planas AM, Prenant C, Mazoyer BM, Chadan S, Comar D, DiGiamberardino L. Protein synthesis studies in rats with methionine. In: Mazoyer B, Heiss WD, Comar D, eds. PET studies on amino acid metabolism and protein synthesis. Dordrecht: Kluwer Academic Publishers, 1993:53-68.
17.
Pardridge WM. Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 1983;63:1481-1535.
18.
Wienhard K, Herholz K, Coenen HH, et al. Increased amino acid transport into brain tumors measured by PET of L-(2-18F)fluorotyrosine. J Nuclear Med 1991;32:1338-1346.
19.
Bergstrom M, Lundqvist H, Ericson K, et al. Comparison of the accumulation kinetics of L-(methyl-11C)- methionine and D-(methyl-11C)-methionine in brain tumors studied with positron emission tomography. Acta Radiol 1987;28:225-229.
20.
Bergstrom M, Ericson K, Hagenfeldt L, et al. PET study of methionine accumulation in glioma and normal brain tissue: competition with branched chain amino acids. J Comp Assist Tomogr 1987;11:208-213.
21.
Biersack HJ, Coenen HH, Stöcklin G, et al. Imaging of brain tumors with L-3-[123I]iodo-alpha-methyl tyrosine and SPECT. J Nuclear Med 1989;30:110-112.
22.
Chamberlain MC, Murovic JA, Levin VA. Absence of contrast enhancement on CT brain scans of patients with supratentorial malignant gliomas. Neurology 1988;38:1371-1374.
23.
Elster AD. Magnetic resonance contrast enhancement in cerebral infarction. Neuroimag Clin North Am 1994;4:89-100.
24.
Jarden JO. Pathophysiological aspects of malignant brain tumors studied with positron emission tomography. Acta Neurol Scand 1994;156(suppl):1-35.
25.
Roelcke U, Radu E, Ametamey S, Pellikka R, Steinbrich W, Leenders KL. Association of 82Rubidium and11 C-methionine uptake in brain tumors measured by positron emission tomography. J Neuro-Oncol 1996;27:163-171.
26.
Di Chiro G, DeLaPaz RL, Brooks RA, et al. Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 1982;32:1323-1329.
27.
Slizofski WJ, Krishna L, Katsetos CD, et al. Thallium imaging for brain tumors with results measured by a semiquantitative index and correlated with histopathology. Cancer 1994;74:3190-3197.
28.
Pruim J, Willemsen ATM, Molenaar WM, et al. Brain tumors-L-[1-C-11]tyrosine PET for visualization and quantification of protein synthesis rate. Radiology 1995;197:221-226.
29.
Roelcke U, Radu EW, von Ammon K, Hausmann O, Maguire RP, Leenders KL. Alteration of blood-brain barrier in human brain tumors: comparison of [18F]fluorodeoxyglucose, [11C]methionine and rubidium-82 using PET. J Neurol Sci 1995;132:20-27.
30.
Plate KH, Risau W. Angiogenesis in malignant gliomas. GLIA 1995;15:339-347.
31.
Ogawa T, Hatazawa J, Inugami A, et al. Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nuclear Med 1995;36:2175-2179.
32.
Jacobs A. Amino acid uptake in ischemically compromised brain tissue. Stroke 1995;26:1859-1866.
33.
Shibamoto Y, Kitakabu Y, Takahashi M, et al. Supratentorial low-grade astrocytoma. Correlation of computed tomography findings with effect of radiation therapy and prognostic variables. Cancer 1993;72:190-195.
34.
Würker M, Herholz K, Voges J, et al. Glucose consumption and methionine uptake in low-grade gliomas after iodine-125 brachytherapy. Eur J Nuclear Med 1996;23:583-586.

Information & Authors

Information

Published In

Neurology®
Volume 50Number 5May 1998
Pages: 1316-1322
PubMed: 9595980

Publication History

Published online: May 1, 1998
Published in print: May 1998

Permissions

Request permissions for this article.

Authors

Affiliations & Disclosures

K. Herholz, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
T. Hölzer, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
B. Bauer, PhD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
R. Schröder, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
J. Voges, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
R. I. Ernestus, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
G. Mendoza, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
G. Weber-Luxenburger, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
J. Löttgen, PhD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
A. Thiel, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
K. Wienhard, PhD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.
W. D. Heiss, MD
From the Klinik für Neurologie (Drs. Herholz, Hölzer, Weber-Luxenburger, and Heiss), Institut für Pathologie (Dr. Schröder), Klinik für Stereotaxie und funktionelle Neurochirurgie(Dr. Voges), and Klinik für allgemeine Neurochirurgie (Dr. Ernestus), Universität zu Köln; and the Max-Planck-Institut für Neurologische Forschung (Drs. Bauer, Mendoza, Löttgen, Thiel, Wienhard, and Heiss), Köln, Germany.

Notes

Address correspondence and reprint requests to Dr. W.-D. Heiss, Max-Planck-Institut für Neurologische Forschung, Gleuelerstr. 50, D-50931 Köln, Germany.

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. [11C]-methionine positron emission tomography in the evaluation of pediatric low-grade gliomas, Neuro-Oncology Advances, 6, 1, (2024).https://doi.org/10.1093/noajnl/vdae056
    Crossref
  2. Methyl-11C-L-methionine positron emission tomography for radiotherapy planning for recurrent malignant glioma, Annals of Nuclear Medicine, 38, 4, (305-314), (2024).https://doi.org/10.1007/s12149-024-01901-z
    Crossref
  3. Loss of methylthioadenosine phosphorylase immunoreactivity correlates with poor prognosis and elevated uptake of 11C-methionine in IDH-mutant astrocytoma, Journal of Neuro-Oncology, 168, 2, (355-365), (2024).https://doi.org/10.1007/s11060-024-04661-y
    Crossref
  4. Amino Acid PET in Neurooncology, Journal of Nuclear Medicine, 64, 5, (693-700), (2023).https://doi.org/10.2967/jnumed.122.264859
    Crossref
  5. AI-based Virtual Synthesis of Methionine PET from Contrast-enhanced MRI: Development and External Validation Study, Radiology, 308, 2, (2023).https://doi.org/10.1148/radiol.223016
    Crossref
  6. Development and validation of clinical-radiomics analysis for preoperative prediction of IDH mutation status and WHO grade in diffuse gliomas: a consecutive l-[methyl-11C] methionine cohort study with two PET scanners, European Journal of Nuclear Medicine and Molecular Imaging, 51, 5, (1423-1435), (2023).https://doi.org/10.1007/s00259-023-06562-0
    Crossref
  7. Diagnostic accuracy of anti-3-[18F]-FACBC PET/MRI in gliomas, European Journal of Nuclear Medicine and Molecular Imaging, 51, 2, (496-509), (2023).https://doi.org/10.1007/s00259-023-06437-4
    Crossref
  8. New Imaging Features of Multinodular and Vacuolating Neuronal Tumor Revealed by Alcohol and Illicit Drugs Consumption, Diagnostics, 12, 11, (2779), (2022).https://doi.org/10.3390/diagnostics12112779
    Crossref
  9. PET With 11C-Methyl-l-Methionine as a Predictor of Consequential Outcomes at the Time of Discontinuing Temozolomide-Adjuvant Chemotherapy in Patients With Residual IDH-Mutant Lower-Grade Glioma, Clinical Nuclear Medicine, 47, 7, (569-574), (2022).https://doi.org/10.1097/RLU.0000000000004221
    Crossref
  10. Update nuklearmedizinische Bildgebung von Gehirntumoren und -metastasen, Angewandte Nuklearmedizin, 45, 04, (351-359), (2022).https://doi.org/10.1055/a-1712-6180
    Crossref
  11. See more
Loading...

View Options

Get Access

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

The neurology.org payment platform is currently offline. Our technical team is working as quickly as possible to restore service.

If you need immediate support or to place an order, please call or email customer service:

  • 1-800-638-3030 for U.S. customers - 8:30 - 7 pm ET (M-F)
  • 1-301-223-2300 for customers outside the U.S. - 8:30 - 7 pm ET (M-F)
  • [email protected]

We appreciate your patience during this time and apologize for any inconvenience.

View options

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share