Skip to main content
AAN.com
Articles
January 1, 1999

Hippocampal and entorhinal cortex atrophy in frontotemporal dementia and Alzheimer’s disease

January 1, 1999 issue
52 (1) 91

Abstract

Objective: To describe atrophic changes of the hippocampus and entorhinal cortex in frontotemporal dementia (FTD) and compare them with those of AD.
Background: The medial temporal lobe shows atrophic changes early in the course of AD, but whether these changes are specific to AD or occur in other degenerative dementias, and to what extent, is unclear.
Methods: The authors measured the volumes of the left and right hippocampus and entorhinal cortex from MR images (1.5 T, 2-mm–thick slices) in 12 patients with FTD, 30 with AD, and 30 elderly control subjects.
Results: In FTD patients, the left and right hippocampus (16% and 21% tissue loss) and the entorhinal cortex (28% and 27% loss) were more atrophic than the control subjects. Atrophy of the hippocampus in FTD was less severe than in AD, but atrophy of the entorhinal cortex was equally severe. Greater hippocampal and entorhinal cortex atrophy was present in the most severe patients in both groups (as high as a 49% tissue loss). The sensitivity of the hippocampus and the entorhinal cortex to discriminate FTD patients from control subjects was low (49% and 52%, respectively; specificity set at 90%), whereas hippocampal volumes could better differentiate AD patients from control subjects (80% sensitivity).
Conclusions: At variance with AD, detectable in vivo atrophy of the hippocampus might not be an early event in FTD. Differential patterns of atrophy might help in the diagnostic process of the degenerative dementias.

Get full access to this article

View all available purchase options and get full access to this article.

References

1.
Jack CR, Petersen RC, O’Brien PC, Tangalos EG. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 1992;42:183–188.
2.
Kesslak JP, Nalcioglu O, Cotman CW. Quantification of magnetic resonance scans for hippocampal and parahippocampal atrophy in Alzheimer’s disease. Neurology 1991;41:51–54.
3.
Laakso MP, Partanen K, Riekkinen P Jr, et al. Hippocampal volumes in Alzheimer’s disease, Parkinson’s disease with and without dementia, and in vascular dementia : an MRI study. Neurology 1996;46:678–681.
4.
Frisoni GB, Beltramello A, Geroldi C, Weiss C, Bianchetti A, Trabucchi M. Brain atrophy in frontotemporal dementia. J Neurol Neurosurg Psychiatry 1996;61:157–165.
5.
Double KL, Halliday GM, McRitchie DA, Reid WG, Hely MA, Morris JG. Regional brain atrophy in idiopathic Parkinson’s disease and diffuse Lewy body disease. Dementia 1996;7:304–313.
6.
Lavenu I, Pasquier F, Lebert F, Pruvo JP, Petit H. Explicit memory in frontotemporal dementia : the role of medial temporal atrophy. Dementia Geriatr Cogn Disord 1998;9:99–102.
7.
Pantel J, Schroder J, Essig M, et al. Quantitative magnetic resonance imaging in geriatric depression and primary degenerative dementia. J Affect Disord 1997;42:69–83.
8.
Knopman DS, Mastri AR, Frey WH, et al. Dementia lacking distinctive histologic features : a common non-Alzheimer degenerative dementia. Neurology 1990;40:251–266.
9.
Giannakopoulos P, Hof PR, Bouras C. Dementia lacking distinctive histopathology : clinicopathological evaluation of 32 cases. Acta Neuropathol 1995;89:346–355.
10.
Jackson M, Lennox G, Lowe J. Motor neurone disease—inclusion dementia. Neurodegeneration 1996;5:339–350.
11.
Gustafson L. Frontal lobe degeneration of non-Alzheimer type. II. Clinical picture and differential diagnosis. Arch Gerontol Geriatr 1987;6:209–223.
12.
Lund and Manchester Groups.Clinical and neuropathological criteria for frontotemporal dementia. J Neurol Neurosurg Psychiatry 1994;57:886–896.
13.
Miller BL, Ikonte C, Ponton M, et al. A study of the Lund–Manchester research criteria for frontotemporal dementia : clinical and single-photon emission CT correlations. Neurology 1997;48:937–942.
14.
Mann DMA, South PW, Snowden JS, Neary D. Dementia of frontal lobe type : neuropathology and immunohistochemistry. J Neurol Neurosurg Psychiatry 1993;56:605–614.
15.
Mann DM, South PW. The topographic distribution of brain atrophy in frontal lobe dementia. Acta Neuropathol 1993;85:334–340.
16.
Niizato K, Tsuchiya K, Tominaga I, Kato Y, Ikeda K. Pick’s disease with amyotrophic lateral sclerosis (ALS) : report of two autopsy cases and literature review. J Neurol Sci 1997;148:107–112.
17.
Filley CM, Kleinschmidt–De Masters BK, Gross KF. Non-Alzheimer fronto-temporal degenerative dementia. A neurobehavioral and pathologic study. Clin Neuropathol 1994;13:109–116.
18.
Kaye JA, Swihart T, Howieson D, et al. Volume loss of the hippocampus and temporal lobe in healthy elderly persons destined to develop dementia. Neurology 1997;48:1297–1304.
19.
Braak H, Braak E. Neuropathological staging of Alzheimer-related changes. Acta Neuropathol 1991;82:239–259.
20.
Frisoni GB, Beltramello A, Weiss C, Geroldi C, Bianchetti A, Trabucchi M. Linear measures of atrophy in mild Alzheimer’s disease. AJNR Am J Neuroradiol 1996;17:913–923.
21.
Kinoshita A, Tomimoto H, Suenaga T, Akiguchi I, Kimura J. Ubiquitin-related cytoskeletal abnormality in frontotemporal dementia : immunohistochemical and immunoelectron microscope studies. Acta Neuropathol 1997;94:67–72.
22.
Hayashi M, Kobayashi K, Ishida C, et al. Non-Alzheimer dementia with status spongiosus and neuronal cell loss showing unusual perineuronal structures and point mutation at 129 codon of prion protein. Dementia Geriatr Cogn Disord 1997;8:55–59.
23.
Sima AA, Defendini R, Keohane C, et al. The neuropathology of chromosome 17-linked dementia. Ann Neurol 1996;39:734–743.
24.
Bergmann M, Kuchelmeister K, Schmid KW, Kretzschmar HA, Schroder R. Different variants of frontotemporal dementia : a neuropathological and immunohistochemical study. Acta Neuropathol 1996;92:170–179.
25.
Jackson M, Lowe J. The new neuropathology of degenerative frontotemporal dementias. Acta Neuropathol 1996;91:127–134.
26.
Frisoni GB, Pizzolato G, Geroldi C, Rossato A, Bianchetti A, Trabucchi M. Dementia of frontal type : neuropsychological and [99Tc]-HMPAO SPECT features. J Geriatr Psychiatry Neurol 1995;8:42–48.
27.
Knopman DS, Christensen KJ, Shut LJ, et al. The spectrum of imaging and neuropsychological findings in Pick’s disease. Neurology 1989;39:362–368.
28.
McKhann G, Drachman D, Folstein MF, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease : report of the NINCDS–ADRDA Work Group. Neurology 1984;34:939–944.
29.
Rozzini L, Lussignoli G, Padovani A, Bianchetti A, Trabucchi M. Alzheimer disease and frontotemporal dementia. Arch Neurol 1997;54:350. Letter.
30.
Magni E, Binetti G, Bianchetti A, Rozzini R, Trabucchi M. Mini-Mental State Examination : a normative study in an Italian elderly population. Eur J Neurol 1996;3:198–202.
31.
Hughes CP, Berg L, Danziger WL, Coben LA, Martin LA. A new clinical scale for the staging of dementia. Br J Psychiatry 1982;140:566–572.
32.
Frisoni GB, Padovani A, Binetti G, Magni E, Bianchetti A, Trabucchi M. GEMS (global evaluation of mental status): a multidimensional neuropsychological tool for dementia assessment. Presented at the VI Congress of the International Psychogeriatric Association; October 19, 1993; Berlin, Germany. Symposium 72.
33.
Insausti R, Juottonen K, Soininen H, et al. MRI volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 1998;19:659–671.
34.
Jagust WJ, Davies P, Tiller–Borcich JK, Reed BR. Focal Alzheimer’s disease. Neurology 1990;40:14–19.
35.
Juottonen K, Laakso MP, Insausti R, et al. Volumes of theentorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging 1998;19:15–22.
36.
Mizutani T, Kasahara M. Hippocampal atrophy secondary to entorhinal cortical degeneration in Alzheimer-type dementia. Neurosci Lett 1997;222:119–122.
37.
Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in nondemented elderly individuals matches the pattern in Alzheimer’s disease. Neurology 1992;42:1681–1688.
38.
Laakso MP, Soininen H, Partanen K, et al. MRI of the hippocampus in Alzheimer’s disease : sensitivity, specificity and analysis of the incorrectly classified subjects. Neurobiol Aging 1998;19:23–31.
39.
DeCarli C, Murphy DGM, Gillette JA, et al. Lack of age-related differences in temporal lobe volume of very healthy adults. AJNR Am J Neuroradiol 1994;15:689–696.
40.
van Hoesen GW, Pandyia DN, Butters N. Cortical afferents to the entorhinal cortex of the rhesus monkey. Science 1972;175:1471–1473.
41.
Hartikainen P, Laakso MP, Lehtovirta M, Riekkinen P Jr, Partanen K, Soininen H. Volumes of hippocampus in the clinical and MRI-based diagnosis of frontotemporal dementia with a reference to Alzheimer’s disease and Parkinson’s disease. Neurology 1998;50 (suppl 4):A161. Abstract.
42.
Jobst KA, Smith AD, Szatmari M, et al. Detection in life of confirmed Alzheimer’s disease using a simple measurement of medial temporal lobe atrophy by computed tomography. Lancet 1992;340:1179–1183.
43.
Leonard BW, Amaral DG, Squire LR, Zola-Morgan S. Transient memory impairment in monkeys with bilateral lesions of the entorhinal cortex. J Neurosci 1995;15:5637–5659.
44.
Zola-Morgan S, Squire LR, Amaral DG, Suzuki WA. Lesions of perirhinal and parahippocampal cortex that spare the amygdala and hippocampal formation produce severe memory impairment. J Neurosci 1989;9:4355–4370.
45.
Bigler ED, Blatter DD, Anderson CV, et al. Hippocampal volume in normal aging and traumatic brain injury. AJNR Am J Neuroradiol 1997;18:11–23.

Information & Authors

Information

Published In

Neurology®
Volume 52Number 1January 1, 1999
Pages: 91

Publication History

Received: May 15, 1998
Accepted: September 19, 1998
Published online: January 1, 1999
Published in print: January 1, 1999

Permissions

Request permissions for this article.

Authors

Affiliations & Disclosures

G.B. Frisoni, MD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
M.P. Laakso, MD, PhD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
A. Beltramello, MD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
C. Geroldi, MD, PhD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
A. Bianchetti, MD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
H. Soininen, MD, PhD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.
M. Trabucchi, MD
From the IRCCS San Giovanni di Dio–FBF (Drs. FrisoniGeroldi, Bianchetti, and Trabucchi), Brescia, Italy; the Departments of Neurology (Drs. Laakso and Soininen) and Clinical Radiology (Dr. Laakso), Kuopio University Hospital, Kuopio, Finland; and the Institute of Radiology (Dr. Beltramello), University of Verona, Ospedale Borgo Roma, Verona, Italy.

Notes

Address correspondence and reprint requests to Dr. Giovanni B. Frisoni, Alzhiemer’s Unit, IRCCS San Giovanni di Dio, FBF, via Pilastroni 4, I-25123 Brescia, Italy; e-mail: [email protected]

Metrics & Citations

Metrics

Citations

Download Citations

If you have the appropriate software installed, you can download article citation data to the citation manager of your choice. Select your manager software from the list below and click Download.

Cited By
  1. The Neuroprotective Activities of the Novel Multi-Target Iron-Chelators in Models of Alzheimer’s Disease, Amyotrophic Lateral Sclerosis and Aging, Cells, 12, 5, (763), (2023).https://doi.org/10.3390/cells12050763
    Crossref
  2. Effects of subcortical ischemic vascular dementia and AD on entorhinal cortex and hippocampus, Neurology, 58, 11, (1635-1641), (2023)./doi/10.1212/WNL.58.11.1635
    Abstract
  3. Rates of global and regional cerebral atrophy in AD and frontotemporal dementia, Neurology, 57, 10, (1756-1763), (2023)./doi/10.1212/WNL.57.10.1756
    Abstract
  4. Pure hippocampal sclerosis, Neurology, 54, 4, (843-848), (2023)./doi/10.1212/WNL.54.4.843
    Abstract
  5. APOE-ε4 is associated with less frontal and more medial temporal lobe atrophy in AD , Neurology, 53, 8, (1825-1825), (2023)./doi/10.1212/WNL.53.8.1825
    Abstract
  6. Voxel-based detection of white matter abnormalities in mild Alzheimer disease, Neurology, 66, 12, (1845-1849), (2023)./doi/10.1212/01.wnl.0000219625.77625.aa
    Abstract
  7. Preliminary validation of a structural magnetic resonance imaging metric for tracking dementia-related neurodegeneration and future decline, NeuroImage: Clinical, 39, (103458), (2023).https://doi.org/10.1016/j.nicl.2023.103458
    Crossref
  8. Classification of neurodegenerative disorders using machine learning techniques, Artificial Intelligence for Neurological Disorders, (261-273), (2023).https://doi.org/10.1016/B978-0-323-90277-9.00028-6
    Crossref
  9. Structural Plasticity of the Hippocampus in Neurodegenerative Diseases, International Journal of Molecular Sciences, 23, 6, (3349), (2022).https://doi.org/10.3390/ijms23063349
    Crossref
  10. Oncogenic Pathways in Neurodegenerative Diseases, International Journal of Molecular Sciences, 23, 6, (3223), (2022).https://doi.org/10.3390/ijms23063223
    Crossref
  11. See more
Loading...

View Options

Get Access

Login options

Check if you have access through your login credentials or your institution to get full access on this article.

Personal login Institutional Login
Purchase Options

Purchase this article to get full access to it.

Purchase Access, $39 for 24hr of access

View options

Full Text

View Full Text

Full Text HTML

View Full Text HTML

Media

Figures

Other

Tables

Share

Share

Share article link

Share